Target Corporation, Sunnyvale, California, United States of America.
PLoS One. 2022 Apr 6;17(4):e0264364. doi: 10.1371/journal.pone.0264364. eCollection 2022.
Neuromorphic computing mimics the neural activity of the brain through emulating spiking neural networks. In numerous machine learning tasks, neuromorphic chips are expected to provide superior solutions in terms of cost and power efficiency. Here, we explore the application of Loihi, a neuromorphic computing chip developed by Intel, for the computer vision task of image retrieval. We evaluated the functionalities and the performance metrics that are critical in content-based visual search and recommender systems using deep-learning embeddings. Our results show that the neuromorphic solution is about 2.5 times more energy-efficient compared with an ARM Cortex-A72 CPU and 12.5 times more energy-efficient compared with NVIDIA T4 GPU for inference by a lightweight convolutional neural network when batch size is 1 while maintaining the same level of matching accuracy. The study validates the potential of neuromorphic computing in low-power image retrieval, as a complementary paradigm to the existing von Neumann architectures.
神经形态计算通过模拟尖峰神经网络来模拟大脑的神经活动。在许多机器学习任务中,神经形态芯片有望在成本和能效方面提供更好的解决方案。在这里,我们探索了英特尔开发的神经形态计算芯片 Loihi 在图像检索的计算机视觉任务中的应用。我们使用深度学习嵌入评估了在基于内容的视觉搜索和推荐系统中至关重要的功能和性能指标。我们的结果表明,与 ARM Cortex-A72 CPU 相比,神经形态解决方案在推断轻量级卷积神经网络时的能效高 2.5 倍,而与 NVIDIA T4 GPU 相比,能效高 12.5 倍,当批量大小为 1 时,同时保持相同的匹配精度。该研究验证了神经形态计算在低功耗图像检索中的潜力,作为对现有冯·诺依曼架构的补充范例。