文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于骨再生的含碳基纳米材料的可生物降解3D打印支架的研究进展

Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration.

作者信息

Armentia Sara Lopez de, Real Juan Carlos Del, Paz Eva, Dunne Nicholas

机构信息

Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain.

Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland.

出版信息

Materials (Basel). 2020 Nov 11;13(22):5083. doi: 10.3390/ma13225083.


DOI:10.3390/ma13225083
PMID:33187218
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7697295/
Abstract

Bone possesses an inherent capacity to fix itself. However, when a defect larger than a critical size appears, external solutions must be applied. Traditionally, an autograft has been the most used solution in these situations. However, it presents some issues such as donor-site morbidity. In this context, porous biodegradable scaffolds have emerged as an interesting solution. They act as external support for cell growth and degrade when the defect is repaired. For an adequate performance, these scaffolds must meet specific requirements: biocompatibility, interconnected porosity, mechanical properties and biodegradability. To obtain the required porosity, many methods have conventionally been used (e.g., electrospinning, freeze-drying and salt-leaching). However, from the development of additive manufacturing methods a promising solution for this application has been proposed since such methods allow the complete customisation and control of scaffold geometry and porosity. Furthermore, carbon-based nanomaterials present the potential to impart osteoconductivity and antimicrobial properties and reinforce the matrix from a mechanical perspective. These properties make them ideal for use as nanomaterials to improve the properties and performance of scaffolds for bone tissue engineering. This work explores the potential research opportunities and challenges of 3D printed biodegradable composite-based scaffolds containing carbon-based nanomaterials for bone tissue engineering applications.

摘要

骨骼具有自我修复的内在能力。然而,当出现大于临界尺寸的缺损时,就必须采用外部解决方案。传统上,自体移植是这些情况下最常用的解决方案。然而,它存在一些问题,如供体部位的并发症。在这种背景下,多孔可生物降解支架已成为一种有趣的解决方案。它们作为细胞生长的外部支撑,并在缺损修复时降解。为了实现良好的性能,这些支架必须满足特定要求:生物相容性、相互连通的孔隙率、机械性能和生物降解性。为了获得所需的孔隙率,传统上使用了许多方法(例如,静电纺丝、冷冻干燥和盐析)。然而,随着增材制造方法的发展,已经提出了一种针对该应用的有前景的解决方案,因为这些方法允许对支架的几何形状和孔隙率进行完全定制和控制。此外,碳基纳米材料具有赋予骨传导性和抗菌性能以及从机械角度增强基质的潜力。这些特性使其成为用于改善骨组织工程支架性能的理想纳米材料。这项工作探索了用于骨组织工程应用的含碳基纳米材料的3D打印可生物降解复合材料支架的潜在研究机会和挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/19bb2f1e0ff2/materials-13-05083-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/cd8083013d88/materials-13-05083-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/80312edbd241/materials-13-05083-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/9c74265882c6/materials-13-05083-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/af848471439c/materials-13-05083-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/ff95766b485a/materials-13-05083-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/9e00d151dfef/materials-13-05083-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/1756f8220e62/materials-13-05083-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/4b1180b07a73/materials-13-05083-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/dd4e45d9da22/materials-13-05083-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/da429f8a9c2a/materials-13-05083-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/ee8a36518ea0/materials-13-05083-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/8c4fcc0218b1/materials-13-05083-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/5dbac3dca1a2/materials-13-05083-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/19bb2f1e0ff2/materials-13-05083-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/cd8083013d88/materials-13-05083-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/80312edbd241/materials-13-05083-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/9c74265882c6/materials-13-05083-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/af848471439c/materials-13-05083-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/ff95766b485a/materials-13-05083-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/9e00d151dfef/materials-13-05083-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/1756f8220e62/materials-13-05083-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/4b1180b07a73/materials-13-05083-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/dd4e45d9da22/materials-13-05083-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/da429f8a9c2a/materials-13-05083-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/ee8a36518ea0/materials-13-05083-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/8c4fcc0218b1/materials-13-05083-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/5dbac3dca1a2/materials-13-05083-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8dd/7697295/19bb2f1e0ff2/materials-13-05083-g014.jpg

相似文献

[1]
Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration.

Materials (Basel). 2020-11-11

[2]
Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.

ACS Appl Mater Interfaces. 2019-2-13

[3]
Three-dimensional (3D) printed scaffold and material selection for bone repair.

Acta Biomater. 2018-11-24

[4]
Additively manufactured biodegradable porous magnesium.

Acta Biomater. 2017-12-12

[5]
Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

Mater Sci Eng C Mater Biol Appl. 2017-5-22

[6]
Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.

Acta Biomater. 2018-4-5

[7]
Additively manufactured biodegradable porous iron.

Acta Biomater. 2018-7-6

[8]
Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.

Acta Biomater. 2016-8

[9]
Biodegradable porous polyurethane scaffolds for tissue repair and regeneration.

J Biomed Mater Res A. 2006-10

[10]
Additively manufactured functionally graded biodegradable porous iron.

Acta Biomater. 2019-7-11

引用本文的文献

[1]
Nanomaterial-based scaffolds for bone regeneration with piezoelectric properties.

Nanomedicine (Lond). 2025-6

[2]
Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials.

Int J Mol Sci. 2025-4-29

[3]
Biphasic Calcium Phosphate and Activated Carbon Microparticles in a Plasma Clot for Bone Reconstruction and In Situ Drug Delivery: A Feasibility Study.

Materials (Basel). 2024-4-11

[4]
3D Printing of a Porous Zn-1Mg-0.1Sr Alloy Scaffold: A Study on Mechanical Properties, Degradability, and Biosafety.

J Funct Biomater. 2024-4-18

[5]
Towards the Clinical Translation of 3D PLGA/β-TCP/Mg Composite Scaffold for Cranial Bone Regeneration.

Materials (Basel). 2024-1-10

[6]
Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications.

3D Print Addit Manuf. 2023-8-1

[7]
Additive manufacturing of sustainable biomaterials for biomedical applications.

Asian J Pharm Sci. 2023-5

[8]
The Mechanical, Thermal, and Chemical Properties of PLA-Mg Filaments Produced via a Colloidal Route for Fused-Filament Fabrication.

Polymers (Basel). 2022-12-10

[9]
Ultra-low binder content 3D printed calcium phosphate graphene scaffolds as resorbable, osteoinductive matrices that support bone formation in vivo.

Sci Rep. 2022-4-28

[10]
A Novel Glucose-Sensitive Scaffold Accelerates Osteogenesis in Diabetic Conditions.

Biomed Res Int. 2022

本文引用的文献

[1]
A multi-scale porous scaffold fabricated by a combined additive manufacturing and chemical etching process for bone tissue engineering.

Int J Bioprint. 2018-3-31

[2]
A Methodological Safe-by-Design Approach for the Development of Nanomedicines.

Front Bioeng Biotechnol. 2020-4-2

[3]
Polypropylene-nanodiamond composite for hernia mesh.

Mater Sci Eng C Mater Biol Appl. 2020-6

[4]
3D printing of ceramic-based scaffolds for bone tissue engineering: an overview.

J Mater Chem B. 2018-7-21

[5]
Effects of porogen morphology on the architecture, permeability, and mechanical properties of hydroxyapatite whisker reinforced polyetheretherketone scaffolds.

J Mech Behav Biomed Mater. 2020-6

[6]
Tuning the three-dimensional architecture of supercritical CO foamed PCL scaffolds by a novel mould patterning approach.

Mater Sci Eng C Mater Biol Appl. 2019-12-3

[7]
Incorporation of graphene oxide into poly(ɛ-caprolactone) 3D printed fibrous scaffolds improves their antimicrobial properties.

Mater Sci Eng C Mater Biol Appl. 2019-12-16

[8]
Silanization improves biocompatibility of graphene oxide.

Mater Sci Eng C Mater Biol Appl. 2020-1-7

[9]
Development of new biocompatible 3D printed graphene oxide-based scaffolds.

Mater Sci Eng C Mater Biol Appl. 2019-12-24

[10]
Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.

Mater Sci Eng C Mater Biol Appl. 2020-1-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索