Suppr超能文献

通过直接从正射校正图像中提取特征提高无人机系统高通量表型分析的准确性。

Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images.

作者信息

Wang Xu, Silva Paula, Bello Nora M, Singh Daljit, Evers Byron, Mondal Suchismita, Espinosa Francisco P, Singh Ravi P, Poland Jesse

机构信息

Department of Plant Pathology, Kansas State University, Manhattan, KS, United States.

Interdepartmental Genetics, Kansas State University, Manhattan, KS, United States.

出版信息

Front Plant Sci. 2020 Oct 21;11:587093. doi: 10.3389/fpls.2020.587093. eCollection 2020.

Abstract

The development of high-throughput genotyping and phenotyping has provided access to many tools to accelerate plant breeding programs. Unmanned Aerial Systems (UAS)-based remote sensing is being broadly implemented for field-based high-throughput phenotyping due to its low cost and the capacity to rapidly cover large breeding populations. The Structure-from-Motion photogrammetry processes aerial images taken from multiple perspectives over a field to an orthomosaic photo of a complete field experiment, allowing spectral or morphological trait extraction from the canopy surface for each individual field plot. However, some phenotypic information observable in each raw aerial image seems to be lost to the orthomosaic photo, probably due to photogrammetry processes such as pixel merging and blending. To formally assess this, we introduced a set of image processing methods to extract phenotypes from orthorectified raw aerial images and compared them to the negative control of extracting the same traits from processed orthomosaic images. We predict that standard measures of accuracy in terms of the broad-sense heritability of the remote sensing spectral traits will be higher using the orthorectified photos than with the orthomosaic image. Using three case studies, we therefore compared the broad-sense heritability of phenotypes in wheat breeding nurseries including, (1) canopy temperature from thermal imaging, (2) canopy normalized difference vegetation index (NDVI), and (3) early-stage ground cover from multispectral imaging. We evaluated heritability estimates of these phenotypes extracted from multiple orthorectified aerial images via four statistical models and compared the results with heritability estimates of these phenotypes extracted from a single orthomosaic image. Our results indicate that extracting traits directly from multiple orthorectified aerial images yielded increased estimates of heritability for all three phenotypes through proper modeling, compared to estimation using traits extracted from the orthomosaic image. In summary, the image processing methods demonstrated in this study have the potential to improve the quality of the plant trait extracted from high-throughput imaging. This, in turn, can enable breeders to utilize phenomics technologies more effectively for improved selection.

摘要

高通量基因分型和表型分析技术的发展为加速植物育种计划提供了许多工具。基于无人机系统(UAS)的遥感技术因其成本低且能够快速覆盖大量育种群体而被广泛应用于田间高通量表型分析。运动恢复结构(Structure-from-Motion)摄影测量法将从多个角度拍摄的田间航空图像处理成完整田间试验的正射镶嵌照片,从而能够从每个单独的田间小区的冠层表面提取光谱或形态特征。然而,在每张原始航空图像中可观察到的一些表型信息似乎在正射镶嵌照片中丢失了,这可能是由于像素合并和融合等摄影测量过程导致的。为了正式评估这一点,我们引入了一组图像处理方法,从正射校正后的原始航空图像中提取表型,并将其与从处理后的正射镶嵌图像中提取相同特征的阴性对照进行比较。我们预测,就遥感光谱特征的广义遗传力而言,使用正射校正照片的准确性标准测量值将高于正射镶嵌图像。因此,通过三个案例研究,我们比较了小麦育种苗圃中表型的广义遗传力,包括:(1)热成像的冠层温度,(2)冠层归一化差异植被指数(NDVI),以及(3)多光谱成像的早期地面覆盖情况。我们通过四种统计模型评估了从多个正射校正航空图像中提取的这些表型的遗传力估计值,并将结果与从单个正射镶嵌图像中提取的这些表型的遗传力估计值进行比较。我们的结果表明,与使用从正射镶嵌图像中提取的特征进行估计相比,通过适当建模,直接从多个正射校正航空图像中提取特征可提高所有三种表型的遗传力估计值。总之,本研究中展示的图像处理方法有潜力提高从高通量成像中提取的植物性状的质量。这反过来又可以使育种者更有效地利用表型组学技术进行改良选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/27c3/7609415/f3357c13775d/fpls-11-587093-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验