Wang Yongtao, Lin Xiaoyun, Zhang Gong, Gao Hui, Zhao Zhi-Jian, Zhang Peng, Wang Tuo, Gong Jinlong
School of Chemical Engineering and Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China.
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2305604120. doi: 10.1073/pnas.2305604120. Epub 2023 Aug 16.
Electrochemical conversion of N into ammonia presents a sustainable pathway to produce hydrogen storage carrier but yet requires further advancement in electrocatalyst design and electrolyzer integration. This technology suffers from low selectivity and yield owing to the extremely strong N≡N bond and the exceptionally low solubility of N in aqueous systems. A high NH synthesis performance is restricted by the high activation energy of N≡N bond and the supply insufficiency of N to active sites. This paper describes the introduction of electron-rich Bi sites into Ag catalysts with a high-pressure electrolyzer that enables a dramatically enhanced Faradaic efficiency of 44.0% and yield of 28.43 μg cm h at 4.0 MPa. Combined with density functional theory results, in situ attenuated total reflectance surface-enhanced infrared absorption spectroscopy demonstrates that N reduction reaction follows an associative mechanism, in which a high coverage of N-N bond and -NH intermediates suggest electron-rich Bi boosts sound activation of N molecules and low hydrogenation barrier. The proposed strategy of engineering electrochemical catalysts and devices provides powerful guidelines for achieving industrial-level green ammonia production.
将氮电化学转化为氨为生产储氢载体提供了一条可持续的途径,但在电催化剂设计和电解槽集成方面仍需进一步改进。由于N≡N键极强且氮在水体系中的溶解度极低,该技术存在选择性和产率低的问题。N≡N键的高活化能和氮向活性位点的供应不足限制了氨的高合成性能。本文介绍了通过高压电解槽将富电子的铋位点引入银催化剂中,在4.0 MPa压力下,法拉第效率显著提高至44.0%,产率达到28.43 μg cm⁻² h⁻¹。结合密度泛函理论结果,原位衰减全反射表面增强红外吸收光谱表明,氮还原反应遵循缔合机制,其中高覆盖度的N-N键和-NH中间体表明富电子的铋促进了氮分子的良好活化和低氢化势垒。所提出的电化学催化剂和装置工程策略为实现工业级绿色氨生产提供了有力指导。