Suppr超能文献

扫描单分子定位显微镜(scanSMLM)用于超分辨率体积成像。

Scanning single molecule localization microscopy (scanSMLM) for super-resolution volume imaging.

机构信息

Nanobioimaging Laboratory, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India.

Centre for Cryogenic Technology, Indian Institute of Science, Bangalore, 560012, India.

出版信息

Commun Biol. 2023 Oct 17;6(1):1050. doi: 10.1038/s42003-023-05364-2.

Abstract

Over the last decade, single-molecule localization microscopy (SMLM) has developed into a set of powerful techniques that have improved spatial resolution over diffraction-limited microscopy and demonstrated the ability to resolve biological features down to a few tens of nanometers. We introduce a single molecule-based scanning SMLM (scanSMLM) system that enables rapid volume imaging. Along with epi-illumination, the system employs a scanning-based 4f detection for volume imaging. The 4f system comprises a combination of an electrically-tunable lens and high NA detection objective lens. By rapidly changing the aperture (or equivalently the focus) of an electrically-tunable lens (ETL) in a 4f detection system, the selectivity of the axial object plane is achieved, for which the image forms in the image/detector plane. So, in principle, one can scan the object volume by just altering the aperture of ETL. Two schemes were adopted to carry out volume imaging: cyclic scan and conventional scan. The cyclic scheme scans the volume in each scan cycle, whereas plane-wise scanning is performed in the conventional scheme. Hence, the cyclic scan ensures uniform dwell time on each frame during data collection, thereby evenly distributing photobleaching throughout the cell volume. With a minimal change in the system hardware (requiring the addition of an ETL lens and related electronics for step-voltage generation) in the existing SMLM system, volume scanning (along the z-axis) can be achieved. To calibrate and derive critical system parameters, we imaged fluorescent beads embedded in a gel-matrix 3D block as a test sample. Subsequently, scanSMLM is employed to visualize the architecture of actin-filaments and the distribution of Meos-Tom20 molecules on the mitochondrial membrane. The technique is further exploited to understand the clustering of Hemagglutinin (HA) protein single molecules in a transfected cell for studying Influenza-A disease progression. The system, for the first time, enabled 3D visualization of HA distribution that revealed HA cluster formation spanning the entire cell volume, post 24 hrs of transfection. Critical biophysical parameters related to HA clusters (density, the number of HA molecules per cluster, axial span, fraction of clustered molecules, and others) are also determined, giving an unprecedented insight into Influenza-A disease progression at the single-molecule level.

摘要

在过去的十年中,单分子定位显微镜(SMLM)已经发展成为一组强大的技术,其提高了空间分辨率,超越了衍射极限显微镜,并展示了分辨几十纳米生物特征的能力。我们引入了一种基于单分子的扫描 SMLM(scanSMLM)系统,该系统能够实现快速体积成像。该系统结合了 epi 照明,采用基于扫描的 4f 检测进行体积成像。4f 系统由电调谐透镜和高 NA 检测物镜的组合组成。通过在 4f 检测系统中快速改变电调谐透镜(ETL)的孔径(或等效于焦点),实现了轴向物面的选择性,其中图像在像/探测器平面中形成。因此,原则上,仅通过改变 ETL 的孔径就可以扫描物体体积。采用两种方案进行体积成像:循环扫描和传统扫描。在循环方案中,在每个扫描循环中扫描体积,而在传统方案中则进行平面扫描。因此,循环扫描可确保在数据采集过程中每个帧上的均匀停留时间,从而在整个细胞体积中均匀分布光漂白。通过对现有 SMLM 系统进行最小的系统硬件更改(需要添加 ETL 透镜和相关电子设备以产生阶跃电压),可以实现体积扫描(沿 z 轴)。为了校准和推导关键系统参数,我们使用嵌入在凝胶基质 3D 块中的荧光珠作为测试样品进行成像。随后,使用 scanSMLM 可视化肌动蛋白丝的结构和线粒体膜上 Meos-Tom20 分子的分布。该技术进一步用于研究转染细胞中血凝素(HA)蛋白单分子的聚集,以研究流感-A 疾病的进展。该系统首次实现了 HA 分布的 3D 可视化,揭示了 HA 簇形成横跨整个细胞体积,在转染后 24 小时。还确定了与 HA 簇相关的关键生物物理参数(密度、每个簇中的 HA 分子数、轴向跨度、聚集分子的分数等),这为流感-A 疾病在单分子水平上的进展提供了前所未有的深入了解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验