Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, India.
Department of Physics, University of Pisa, Pisa, Italy.
Sci Rep. 2023 Aug 2;13(1):12561. doi: 10.1038/s41598-023-39096-4.
The blinking properties of a single molecule are critical for single-molecule localization microscopy (SMLM). Typically, SMLM techniques involve recording several frames of diffraction-limited bright spots of single-molecules with a detector exposure time close to the blinking period. This sets a limit on the temporal resolution of SMLM to a few tens of milliseconds. Realizing that a substantial fraction of single molecules emit photons for time scales much shorter than the average blinking period, we propose accelerating data collection to capture these fast emitters. Here, we put forward a short exposure-based SMLM (shortSMLM) method powered by sCMOS detector for understanding dynamical events (both at single molecule and ensemble level). The technique is demonstrated on an Influenza-A disease model, where NIH3T3 cells (both fixed and live cells) were transfected by Dendra2-HA plasmid DNA. Analysis shows a 2.76-fold improvement in the temporal resolution that comes with a sacrifice in spatial resolution, and a particle resolution shift PAR-shift (in terms of localization precision) of [Formula: see text] 11.82 nm compared to standard SMLM. We visualized dynamic HA cluster formation in transfected cells post 24 h of DNA transfection. It is noted that a reduction in spatial resolution does not substantially alter cluster characteristics (cluster density, [Formula: see text] molecules/cluster, cluster spread, etc.) and, indeed, preserves critical features. Moreover, the time-lapse imaging reveals the dynamic formation and migration of Hemagglutinin (HA) clusters in a live cell. This suggests that [Formula: see text] using a synchronized high QE sCMOS detector (operated at short exposure times) is excellent for studying temporal dynamics in cellular system.
单分子的闪烁性质对于单分子定位显微镜(SMLM)至关重要。通常,SMLM 技术涉及使用探测器曝光时间接近闪烁周期来记录几个单分子的衍射限制亮斑的帧。这将 SMLM 的时间分辨率限制在几十毫秒内。我们意识到,相当一部分单分子在远小于平均闪烁周期的时间尺度上发射光子,因此我们提出加速数据采集以捕获这些快速发射器。在这里,我们提出了一种基于短曝光的 SMLM(shortSMLM)方法,该方法由 sCMOS 探测器提供支持,用于理解动态事件(在单分子和整体水平上)。该技术在流感 A 疾病模型上得到了验证,其中 NIH3T3 细胞(固定和活细胞)被 Dendra2-HA 质粒 DNA 转染。分析表明,时间分辨率提高了 2.76 倍,空间分辨率有所牺牲,并且粒子分辨率偏移 PAR-shift(就定位精度而言)为[公式:见文本]11.82nm 与标准 SMLM 相比。我们在转染后 24 小时观察了转染细胞中动态 HA 簇的形成。值得注意的是,空间分辨率的降低不会实质性地改变簇的特征(簇密度、[公式:见文本]个分子/簇、簇扩展等),并且确实保留了关键特征。此外,延时成像揭示了活细胞中 Hemagglutinin(HA)簇的动态形成和迁移。这表明[公式:见文本]使用同步高量子效率 sCMOS 探测器(在短曝光时间下操作)非常适合研究细胞系统中的时间动态。