Suppr超能文献

基于机器学习的模型在急诊科分诊疑似心血管疾病患者中的决策支持。

Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease.

机构信息

Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Goodwill Hessian Health Technology Co., Ltd, Beijing, China.

出版信息

Int J Med Inform. 2021 Jan;145:104326. doi: 10.1016/j.ijmedinf.2020.104326. Epub 2020 Nov 3.

Abstract

BACKGROUND

Accurate differentiation and prioritization in emergency department (ED) triage is important to identify high-risk patients and to efficiently allocate of finite resources. Using data available from patients with suspected cardiovascular disease presenting at ED triage, this study aimed to train and compare the performance of four common machine learning models to assist in decision making of triage levels.

METHODS

This cross-sectional study in the second Affiliated Hospital of Guangzhou Medical University was conducted from August 2015 to December 2018 inclusive. Demographic information, vital signs, blood glucose, and other available triage scores were collected. Four machine learning models - multinomial logistic regression (multinomial LR), eXtreme gradient boosting (XGBoost), random forest (RF) and gradient-boosted decision tree (GBDT) - were compared. For each model, 80 % of the data set was used for training and 20 % was used to test the models. The area under the receiver operating characteristic curve (AUC), accuracy and macro- F were calculated for each model.

RESULTS

In 17,661 patients presenting with suspected cardiovascular disease, the distribution of triage of level 1, level 2, level 3 and level 4 were 1.3 %, 18.6 %, 76.5 %, and 3.6 % respectively. The AUCs were: XGBoost (0.937), GBDT (0.921), RF (0.919) and multinomial LR (0.908). Based on feature importance generated by XGBoost, blood pressure, pulse rate, oxygen saturation, and age were the most significant variables for making decisions at triage.

CONCLUSION

Four machine learning models had good discriminative ability of triage. XGBoost demonstrated a slight advantage over other models. These models could be used for differential triage of low-risk patients and high-risk patients as a strategy to improve efficiency and allocation of finite resources.

摘要

背景

在急诊科(ED)分诊中准确地区分和优先处理高危患者对于识别高危患者和有效分配有限资源非常重要。本研究利用来自 ED 分诊中疑似心血管疾病患者的数据,旨在训练和比较四种常见机器学习模型的性能,以协助分诊水平的决策。

方法

本研究是在广州医科大学第二附属医院进行的一项横断面研究,时间范围为 2015 年 8 月至 2018 年 12 月。收集了人口统计学信息、生命体征、血糖和其他可用的分诊评分。比较了四种机器学习模型 - 多项逻辑回归(多项 LR)、极端梯度提升(XGBoost)、随机森林(RF)和梯度提升决策树(GBDT)。对于每个模型,使用数据集的 80%进行训练,使用 20%进行测试模型。为每个模型计算了接收者操作特征曲线下的面积(AUC)、准确性和宏 F。

结果

在 17661 名疑似心血管疾病患者中,1 级、2 级、3 级和 4 级分诊的分布分别为 1.3%、18.6%、76.5%和 3.6%。AUC 分别为:XGBoost(0.937)、GBDT(0.921)、RF(0.919)和多项 LR(0.908)。基于 XGBoost 生成的特征重要性,血压、脉搏率、血氧饱和度和年龄是分诊决策的最重要变量。

结论

四种机器学习模型对分诊具有良好的鉴别能力。XGBoost 模型在其他模型上略有优势。这些模型可用于对低危患者和高危患者进行差异化分诊,作为提高效率和分配有限资源的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验