Contreras-González Aldo-Francisco, Ferre Manuel, Sánchez-Urán Miguel Ángel, Sáez-Sáez Francisco Javier, Blaya Haro Fernando
Centro de Automática y Robótica (CAR) UPM-CSIC, ETS Ingenieros Industriales, Universidad Politécnica de Madrid, Calle de José Gutiérrez Abascal, 2, 28006 Madrid, Spain.
ETS Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia, 3, 28012 Madrid, Spain.
Sensors (Basel). 2020 Nov 12;20(22):6452. doi: 10.3390/s20226452.
Motion tracking techniques have been extensively studied in recent years. However, capturing movements of the upper limbs is a challenging task. This document presents the estimation of arm orientation and elbow and wrist position using wearable flexible sensors (WFSs). A study was developed to obtain the highest range of motion (ROM) of the shoulder with as few sensors as possible, and a method for estimating arm length and a calibration procedure was proposed. Performance was verified by comparing measurement of the shoulder joint angles obtained from commercial two-axis soft angular displacement sensors (sADS) from Bend Labs and from the ground truth system (GTS) OptiTrack. The global root-mean-square error (RMSE) for the shoulder angle is 2.93 degrees and 37.5 mm for the position estimation of the wrist in cyclical movements; this measure of RMSE was improved to 13.6 mm by implementing a gesture classifier.
近年来,运动跟踪技术得到了广泛研究。然而,捕捉上肢的运动是一项具有挑战性的任务。本文介绍了使用可穿戴柔性传感器(WFS)估计手臂方向以及肘部和腕部位置的方法。开展了一项研究,旨在用尽可能少的传感器获得最大的肩部运动范围(ROM),并提出了一种估计手臂长度的方法和校准程序。通过比较从Bend Labs的商用双轴软角位移传感器(sADS)和地面真值系统(GTS)OptiTrack获得的肩关节角度测量值,对性能进行了验证。在周期性运动中,肩部角度的全局均方根误差(RMSE)为2.93度,腕部位置估计的RMSE为37.5毫米;通过实施手势分类器,该RMSE测量值提高到了13.6毫米。