Opialla Tobias, Kempa Stefan, Pietzke Matthias
Integrative Metabolomics and Proteomics, Berlin Institute of Medical Systems Biology/Max-Delbrück Center for Molecular Medicine, 13125 Berlin, Germany.
Metabolites. 2020 Nov 12;10(11):457. doi: 10.3390/metabo10110457.
Reliable analyte identification is critical in metabolomics experiments to ensure proper interpretation of data. Due to chemical similarity of metabolites (as isobars and isomers) identification by mass spectrometry or chromatography alone can be difficult. Here we show that isomeric compounds are quite common in the metabolic space as given in common metabolite databases. Further, we show that retention information can shift dramatically between different experiments decreasing the value of external or even in-house compound databases. As a consequence the retention information in compound databases should be updated regularly, to allow a reliable identification. To do so we present a feasible and budget conscious method to guarantee updates of retention information on a regular basis using well designed compound mixtures. For this we combine compounds in "Ident-Mixes", showing a way to distinctly identify chemically similar compounds through combinatorics and principle of exclusion. We illustrate the feasibility of this approach by comparing Gas chromatography (GC)-columns with identical properties from three different vendors and by creating a compound database from measuring these mixtures by Liquid chromatography-mass spectrometry (LC-MS). The results show the high influence of used materials on retention behavior and the ability of our approach to generate high quality identifications in a short time.
在代谢组学实验中,可靠的分析物鉴定对于确保数据的正确解读至关重要。由于代谢物存在化学相似性(如同位素和异构体),仅通过质谱或色谱进行鉴定可能会很困难。在此我们表明,同分异构化合物在常见代谢物数据库所给出的代谢空间中相当普遍。此外,我们还表明,保留信息在不同实验之间可能会发生显著变化,从而降低了外部甚至内部化合物数据库的价值。因此,化合物数据库中的保留信息应定期更新,以实现可靠的鉴定。为此,我们提出了一种可行且注重预算的方法,通过精心设计的化合物混合物来定期保证保留信息的更新。为此,我们将化合物组合成“Ident-Mixes”,展示了一种通过组合数学和排除原理来明确鉴定化学相似化合物的方法。我们通过比较来自三个不同供应商的具有相同属性的气相色谱(GC)柱,并通过液相色谱-质谱联用(LC-MS)测量这些混合物来创建化合物数据库,以此说明了该方法的可行性。结果表明,所用材料对保留行为有很大影响,并且我们的方法能够在短时间内生成高质量的鉴定结果。