Suppr超能文献

电子断层扫描解析细菌纤维素纤维及其组装导向细胞骨架的结构。

Structure of the Bacterial Cellulose Ribbon and Its Assembly-Guiding Cytoskeleton by Electron Cryotomography.

机构信息

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.

Howard Hughes Medical Institute, Pasadena, California, USA.

出版信息

J Bacteriol. 2021 Jan 11;203(3). doi: 10.1128/JB.00371-20.

Abstract

Cellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength, and stiffness prevent dehydration and mechanical disruption of the biofilm. Bacteria in the genus secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood. We used cryo-electron tomography and focused-ion-beam milling of native bacterial biofilms to image cellulose-synthesizing and bacteria in a frozen-hydrated, near-native state. We confirm previous results suggesting that cellulose crystallization occurs serially following its secretion along one side of the cell, leading to a cellulose ribbon that can reach several micrometers in length and combine with ribbons from other cells to form a robust biofilm matrix. We were able to take direct measurements in a near-native state of the cellulose sheets. Our results also reveal a novel cytoskeletal structure, which we have named the cortical belt, adjacent to the inner membrane and underlying the sites where cellulose is seen emerging from the cell. We found that this structure is not present in other cellulose-synthesizing bacterial species, and 1094, which do not produce organized cellulose ribbons. We therefore propose that the cortical belt holds the cellulose synthase complexes in a line to form higher-order cellulose structures, such as sheets and ribbons. This work's relevance for the microbiology community is twofold. It delivers for the first time high-resolution near-native snapshots of spp. (previously spp.) in the process of cellulose ribbon synthesis, in their native biofilm environment. It puts forward a noncharacterized cytoskeleton element associated with the side of the cell where the cellulose synthesis occurs. This represents a step forward in the understanding of the cell-guided process of crystalline cellulose synthesis, studied specifically in the genus and still not fully understood. Additionally, our successful attempt to use cryo-focused-ion-beam milling through biofilms to image the cells in their native environment will drive the community to use this tool for the morphological characterization of other studied biofilms.

摘要

纤维素是细菌生物膜的广泛组成部分,其具有出色的保水能力、高强度和刚性,可防止生物膜脱水和机械破裂。属的细菌分泌结晶纤维素,其结构与植物细胞壁中发现的结构非常相似。这种更高阶结构是如何产生的还不太清楚。我们使用冷冻电子断层扫描和聚焦离子束研磨天然细菌生物膜,以在冷冻水合的近天然状态下对合成纤维素的和细菌进行成像。我们证实了先前的结果,即纤维素结晶是沿着细胞的一侧连续分泌后发生的,从而形成一条可以达到数微米长的纤维素带,与来自其他细胞的带结合,形成坚固的生物膜基质。我们能够在近天然状态下对纤维素片进行直接测量。我们的结果还揭示了一种新的细胞骨架结构,我们将其命名为皮质带,位于内膜附近,并位于从细胞中出现纤维素的部位下方。我们发现,这种结构不存在于其他合成纤维素的细菌物种和 中,这些细菌不能产生有组织的纤维素带。因此,我们提出皮质带将纤维素合酶复合物保持在一条线上,以形成更高阶的纤维素结构,如片和带。这项工作对微生物学界有两方面的重要意义。它首次提供了在其天然生物膜环境中,属(以前称为属)在纤维素带合成过程中的高分辨率近天然快照。它提出了一种与纤维素合成发生在细胞一侧相关的未被表征的细胞骨架元素。这代表了在理解晶体纤维素合成的细胞引导过程方面向前迈出了一步,特别是在属中进行了研究,但仍不完全理解。此外,我们成功地尝试使用冷冻聚焦离子束研磨通过生物膜对其天然环境中的细胞进行成像,这将推动该领域使用该工具对其他研究生物膜进行形态特征描述。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a70/7811197/1cae6aff7a70/JB.00371-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验