Vázquez-Rivas Elizabeth, Desales-Guzmán Luis Alberto, Pacheco-Sánchez Juan Horacio, Burillo-Amezcua Sofia Guillermina
Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico.
División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Toluca, Metepec 52149, Edo. México, Mexico.
Gels. 2025 Jun 6;11(6):438. doi: 10.3390/gels11060438.
Cellulose is a sustainable biopolymer, being renewable and abundant, non-toxic, biodegradable, and easily functionalizable. However, the development of hydrogels for tissue engineering applications presents significant challenges that require interdisciplinary expertise, given the intricate and dynamic nature of the human body. This paper delves into current research focused on creating advanced cellulose-based hydrogels with tailored mechanical, biological, chemical, and surface properties. These hydrogels show promise in healing, regenerating, and even replacing human tissues and organs. The synthesis of these hydrogels employs a range of innovative techniques, including supramolecular chemistry, click chemistry, enzyme-induced crosslinking, ultrasound, photo radiation, high-energy ionizing radiation, 3D printing, and other emerging methods. In the realm of tissue engineering, various types of hydrogels are explored, such as stimuli-responsive, hybrid, injectable, bio-printed, electrospun, self-assembling, self-healing, drug-releasing, biodegradable, and interpenetrating network hydrogels. Moreover, these materials can be further enhanced by incorporating cell growth factors, biological molecules, or by loading them with cells or drugs. Looking ahead, future research aims to engineer and tailor hydrogels to meet specific needs. This includes exploring safer and more sustainable materials and synthesis techniques, identifying less invasive application methods, and translating these studies into practical applications.
纤维素是一种可持续的生物聚合物,具有可再生、储量丰富、无毒、可生物降解且易于功能化的特点。然而,鉴于人体的复杂和动态特性,用于组织工程应用的水凝胶的开发面临重大挑战,这需要跨学科的专业知识。本文深入探讨了当前的研究,重点是创建具有定制的机械、生物、化学和表面特性的先进纤维素基水凝胶。这些水凝胶在治愈、再生甚至替代人体组织和器官方面显示出前景。这些水凝胶的合成采用了一系列创新技术,包括超分子化学、点击化学、酶诱导交联、超声、光辐射、高能电离辐射、3D打印以及其他新兴方法。在组织工程领域,探索了各种类型的水凝胶,如刺激响应型、混合型、可注射型、生物打印型、电纺型、自组装型、自愈合型、药物释放型、可生物降解型和互穿网络水凝胶。此外,通过掺入细胞生长因子、生物分子,或负载细胞或药物,可以进一步增强这些材料。展望未来,未来的研究旨在设计和定制水凝胶以满足特定需求。这包括探索更安全、更可持续的材料和合成技术,确定侵入性较小的应用方法,并将这些研究转化为实际应用。