Suppr超能文献

高产醋酸菌 Komagataeibacter hansenii 中纤维素合成的分析。

Analysis of cellulose synthesis in a high-producing acetic acid bacterium Komagataeibacter hansenii.

机构信息

School of Life Sciences, Technical University of Munich, Emil-Ramann-Straße 4, 85354, Freising, Germany.

Technical University of Munich, Campus Straubing, Schulgasse 16, 94315, Straubing, Germany.

出版信息

Appl Microbiol Biotechnol. 2023 May;107(9):2947-2967. doi: 10.1007/s00253-023-12461-z. Epub 2023 Mar 17.

Abstract

Bacterial cellulose (BC) represents a renewable biomaterial with unique properties promising for biotechnology and biomedicine. Komagataeibacter hansenii ATCC 53,582 is a well-characterized high-yield producer of BC used in the industry. Its genome encodes three distinct cellulose synthases (CS), bcsAB1, bcsAB2, and bcsAB3, which together with genes for accessory proteins are organized in operons of different complexity. The genetic foundation of its high cellulose-producing phenotype was investigated by constructing chromosomal in-frame deletions of the CSs and of two predicted regulatory diguanylate cyclases (DGC), dgcA and dgcB. Proteomic characterization suggested that BcsAB1 was the decisive CS because of its high expression and its exclusive contribution to the formation of microcrystalline cellulose. BcsAB2 showed a lower expression level but contributes significantly to the tensile strength of BC and alters fiber diameter significantly as judged by scanning electron microscopy. Nevertheless, no distinct extracellular polymeric substance (EPS) from this operon was identified after static cultivation. Although transcription of bcsAB3 was observed, expression of the protein was below the detection limit of proteome analysis. Alike BcsAB2, deletion of BcsAB3 resulted in a visible reduction of the cellulose fiber diameter. The high abundance of BcsD and the accessory proteins CmcAx, CcpAx, and BglxA emphasizes their importance for the proper formation of the cellulosic network. Characterization of deletion mutants lacking the DGC genes dgcA and dgcB suggests a new regulatory mechanism of cellulose synthesis and cell motility in K. hansenii ATCC 53,582. Our findings form the basis for rational tailoring of the characteristics of BC. KEY POINTS: • BcsAB1 induces formation of microcrystalline cellulose fibers. • Modifications by BcsAB2 and BcsAB3 alter diameter of cellulose fibers. • Complex regulatory network of DGCs on cellulose pellicle formation and motility.

摘要

细菌纤维素 (BC) 是一种可再生的生物材料,具有独特的性质,有望在生物技术和生物医学领域得到应用。Komagataeibacter hansenii ATCC 53,582 是一种经过充分研究的高产细菌纤维素生产菌,用于工业生产。其基因组编码三种不同的纤维素合酶 (CS),即 bcsAB1、bcsAB2 和 bcsAB3,这些 CS 与辅助蛋白基因一起组织在不同复杂程度的操纵子中。通过构建 CS 和两个预测的双鸟苷酸环化酶 (DGC) dgcA 和 dgcB 的染色体框内缺失突变体,研究了其高纤维素生产表型的遗传基础。蛋白质组学分析表明,BcsAB1 是决定 CS 的关键,因为它的表达量很高,并且对微晶体纤维素的形成有独特的贡献。BcsAB2 的表达水平较低,但对 BC 的拉伸强度有显著贡献,并且根据扫描电子显微镜的判断,对纤维直径有显著影响。然而,在静态培养后,没有从这个操纵子中鉴定出明显的细胞外多聚物 (EPS)。尽管观察到 bcsAB3 的转录,但蛋白质的表达低于蛋白质组分析的检测限。与 BcsAB2 一样,BcsAB3 的缺失导致纤维素纤维直径明显减小。BcsD 和辅助蛋白 CmcAx、CcpAx 和 BglxA 的高丰度强调了它们对纤维素网络正确形成的重要性。缺乏 DGC 基因 dgcA 和 dgcB 的缺失突变体的表征表明了 K. hansenii ATCC 53,582 中纤维素合成和细胞运动的新调控机制。我们的研究结果为合理调整 BC 的特性奠定了基础。要点:

  1. BcsAB1 诱导微晶体纤维素纤维的形成。

  2. BcsAB2 和 BcsAB3 的修饰改变了纤维素纤维的直径。

  3. DGC 对纤维素皮瓣形成和运动的复杂调控网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e305/10106347/8e37b71faeb5/253_2023_12461_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验