Suppr超能文献

将 Hi-C 链接与组装图整合用于染色体尺度的组装。

Integrating Hi-C links with assembly graphs for chromosome-scale assembly.

机构信息

Department of Computer Science, University of Maryland, College Park, Maryland, United States of America.

Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland, United States of America.

出版信息

PLoS Comput Biol. 2019 Aug 21;15(8):e1007273. doi: 10.1371/journal.pcbi.1007273. eCollection 2019 Aug.

Abstract

Long-read sequencing and novel long-range assays have revolutionized de novo genome assembly by automating the reconstruction of reference-quality genomes. In particular, Hi-C sequencing is becoming an economical method for generating chromosome-scale scaffolds. Despite its increasing popularity, there are limited open-source tools available. Errors, particularly inversions and fusions across chromosomes, remain higher than alternate scaffolding technologies. We present a novel open-source Hi-C scaffolder that does not require an a priori estimate of chromosome number and minimizes errors by scaffolding with the assistance of an assembly graph. We demonstrate higher accuracy than the state-of-the-art methods across a variety of Hi-C library preparations and input assembly sizes. The Python and C++ code for our method is openly available at https://github.com/machinegun/SALSA.

摘要

长读测序和新型长程分析方法通过自动化参考质量基因组的重建,彻底改变了从头基因组组装。特别是,Hi-C 测序正在成为生成染色体尺度支架的经济方法。尽管它越来越受欢迎,但可用的开源工具有限。错误,特别是染色体之间的倒位和融合,仍然高于替代支架技术。我们提出了一种新颖的开源 Hi-C 支架构建器,它不需要预先估计染色体数量,并通过组装图的辅助来最小化支架构建过程中的错误。我们在各种 Hi-C 文库制备和输入组装大小方面都证明了比最先进方法更高的准确性。我们方法的 Python 和 C++代码可在 https://github.com/machinegun/SALSA 上公开获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d37/6719893/7a9cd71c48be/pcbi.1007273.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验