Gavrilov Alexey A, Shamovsky Ilya, Zhegalova Irina, Proshkin Sergey, Shamovsky Yosef, Evko Grigory, Epshtein Vitaly, Rasouly Aviram, Blavatnik Anna, Lahiri Sudipta, Rothenberg Eli, Razin Sergey V, Nudler Evgeny
Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
Nature. 2025 Aug 13. doi: 10.1038/s41586-025-09396-y.
Unravelling how genomes are spatially organized and how their three-dimensional (3D) architecture drives cellular functions remains a major challenge in biology. In bacteria, genomic DNA is compacted into a highly ordered, condensed state called nucleoid. Despite progress in characterizing bacterial 3D genome architecture over recent decades, the fine structure and functional organization of the nucleoid remain elusive due to low-resolution contact maps from methods such as Hi-C. Here we developed an enhanced Micro-C chromosome conformation capture, achieving 10-base pair (bp) resolution. This ultra-high-resolution analysis reveals elemental spatial structures in the Escherichia coli nucleoid, including chromosomal hairpins (CHINs) and chromosomal hairpin domains (CHIDs). These structures, organized by histone-like proteins H-NS and StpA, have key roles in repressing horizontally transferred genes. Disruption of H-NS causes drastic reorganization of the 3D genome, decreasing CHINs and CHIDs, whereas removing both H-NS and StpA results in their complete disassembly, increased transcription of horizontally transferred genes and delayed growth. Similar effects are observed with netropsin, which competes with H-NS and StpA for AT-rich DNA binding. Interactions between CHINs further organize the genome into isolated loops, potentially insulating active operons. Our Micro-C analysis reveals that all actively transcribed genes form distinct operon-sized chromosomal interaction domains (OPCIDs) in a transcription-dependent manner. These structures appear as square patterns on Micro-C maps, reflecting continuous contacts throughout transcribed regions. This work unveils the fundamental structural elements of the E. coli nucleoid, highlighting their connection to nucleoid-associated proteins and transcription machinery.
弄清楚基因组是如何在空间上组织的,以及它们的三维(3D)结构如何驱动细胞功能,仍然是生物学中的一项重大挑战。在细菌中,基因组DNA被压缩成一种高度有序、浓缩的状态,称为类核。尽管近几十年来在表征细菌3D基因组结构方面取得了进展,但由于Hi-C等方法得到的低分辨率接触图谱,类核的精细结构和功能组织仍然难以捉摸。在这里,我们开发了一种增强的Micro-C染色体构象捕获技术,实现了10碱基对(bp)的分辨率。这种超高分辨率分析揭示了大肠杆菌类核中的基本空间结构,包括染色体发夹(CHINs)和染色体发夹结构域(CHIDs)。这些由类组蛋白H-NS和StpA组织的结构,在抑制水平转移基因方面具有关键作用。H-NS的破坏会导致3D基因组的剧烈重组,减少CHINs和CHIDs,而同时去除H-NS和StpA则会导致它们完全解体,水平转移基因的转录增加以及生长延迟。用与H-NS和StpA竞争富含AT的DNA结合的纺锤菌素也观察到了类似的效果。CHINs之间的相互作用进一步将基因组组织成孤立的环,可能隔离活跃的操纵子。我们的Micro-C分析表明,所有活跃转录的基因以转录依赖的方式形成不同的操纵子大小的染色体相互作用结构域(OPCIDs)。这些结构在Micro-C图谱上呈现为方形图案,反映了整个转录区域的连续接触。这项工作揭示了大肠杆菌类核的基本结构元件,突出了它们与类核相关蛋白和转录机制的联系。