Suppr超能文献

卷积相关分析增强基于 SSVEP 的脑机接口性能

Convolutional Correlation Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2681-2690. doi: 10.1109/TNSRE.2020.3038718. Epub 2021 Jan 28.

Abstract

Currently, most of the high-performance models for frequency recognition of steady-state visual evoked potentials (SSVEPs) are linear. However, SSVEPs collected from different channels can have non-linear relationship among each other. Linearly combining electroencephalogram (EEG) from multiple channels is not the most accurate solution in SSVEPs classification. To further improve the performance of SSVEP-based brain-computer interface (BCI), we propose a convolutional neural network-based non-linear model, i.e. convolutional correlation analysis (Conv-CA). Different from pure deep learning models, Conv-CA use convolutional neural networks (CNNs) at the top of a self-defined correlation layer. The CNNs function on how to transform multiple channel EEGs into a single EEG signal. The correlation layer calculates the correlation coefficients between the transformed single EEG signal and reference signals. The CNNs provide non-linear operations to combine EEGs in different channels and different time. And the correlation layer constrains the fitting space of the deep learning model. A comparison study between the proposed Conv-CA method and the task-related component analysis (TRCA) based methods is conducted. Both methods are validated on a 40-class SSVEP benchmark dataset recorded from 35 subjects. The study verifies that the Conv-CA method significantly outperforms the TRCA-based methods. Moreover, Conv-CA has good explainability since its inputs of the correlation layer can be analyzed for visualizing what the model learnt from the data. Conv-CA is a non-linear extension of spatial filters. Its CNN structures can be further explored and tuned for reaching a better performance. The structure of combining neural networks and unsupervised features has the potential to be applied to the classification of other signals.

摘要

目前,大多数用于识别稳态视觉诱发电位(SSVEP)频率的高性能模型都是线性的。然而,来自不同通道的 SSVEP 之间可能存在非线性关系。在线性地组合来自多个通道的脑电图(EEG)并不是 SSVEP 分类中最准确的解决方案。为了进一步提高基于 SSVEP 的脑机接口(BCI)的性能,我们提出了一种基于卷积神经网络的非线性模型,即卷积相关分析(Conv-CA)。与纯深度学习模型不同,Conv-CA 在自定义相关层的顶部使用卷积神经网络(CNN)。CNN 的作用是将多个通道的 EEG 转换为单个 EEG 信号。相关层计算转换后的单个 EEG 信号与参考信号之间的相关系数。CNN 提供了在不同通道和不同时间组合 EEG 的非线性操作。相关层限制了深度学习模型的拟合空间。对所提出的 Conv-CA 方法与基于任务相关成分分析(TRCA)的方法进行了比较研究。这两种方法都在由 35 名受试者记录的 40 类 SSVEP 基准数据集上进行了验证。研究验证了 Conv-CA 方法明显优于基于 TRCA 的方法。此外,Conv-CA 具有良好的可解释性,因为其相关层的输入可以进行分析,以可视化模型从数据中学到的内容。Conv-CA 是空间滤波器的非线性扩展。其 CNN 结构可以进一步探索和调整,以达到更好的性能。结合神经网络和无监督特征的结构有可能应用于其他信号的分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验