IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2681-2690. doi: 10.1109/TNSRE.2020.3038718. Epub 2021 Jan 28.
Currently, most of the high-performance models for frequency recognition of steady-state visual evoked potentials (SSVEPs) are linear. However, SSVEPs collected from different channels can have non-linear relationship among each other. Linearly combining electroencephalogram (EEG) from multiple channels is not the most accurate solution in SSVEPs classification. To further improve the performance of SSVEP-based brain-computer interface (BCI), we propose a convolutional neural network-based non-linear model, i.e. convolutional correlation analysis (Conv-CA). Different from pure deep learning models, Conv-CA use convolutional neural networks (CNNs) at the top of a self-defined correlation layer. The CNNs function on how to transform multiple channel EEGs into a single EEG signal. The correlation layer calculates the correlation coefficients between the transformed single EEG signal and reference signals. The CNNs provide non-linear operations to combine EEGs in different channels and different time. And the correlation layer constrains the fitting space of the deep learning model. A comparison study between the proposed Conv-CA method and the task-related component analysis (TRCA) based methods is conducted. Both methods are validated on a 40-class SSVEP benchmark dataset recorded from 35 subjects. The study verifies that the Conv-CA method significantly outperforms the TRCA-based methods. Moreover, Conv-CA has good explainability since its inputs of the correlation layer can be analyzed for visualizing what the model learnt from the data. Conv-CA is a non-linear extension of spatial filters. Its CNN structures can be further explored and tuned for reaching a better performance. The structure of combining neural networks and unsupervised features has the potential to be applied to the classification of other signals.
目前,大多数用于识别稳态视觉诱发电位(SSVEP)频率的高性能模型都是线性的。然而,来自不同通道的 SSVEP 之间可能存在非线性关系。在线性地组合来自多个通道的脑电图(EEG)并不是 SSVEP 分类中最准确的解决方案。为了进一步提高基于 SSVEP 的脑机接口(BCI)的性能,我们提出了一种基于卷积神经网络的非线性模型,即卷积相关分析(Conv-CA)。与纯深度学习模型不同,Conv-CA 在自定义相关层的顶部使用卷积神经网络(CNN)。CNN 的作用是将多个通道的 EEG 转换为单个 EEG 信号。相关层计算转换后的单个 EEG 信号与参考信号之间的相关系数。CNN 提供了在不同通道和不同时间组合 EEG 的非线性操作。相关层限制了深度学习模型的拟合空间。对所提出的 Conv-CA 方法与基于任务相关成分分析(TRCA)的方法进行了比较研究。这两种方法都在由 35 名受试者记录的 40 类 SSVEP 基准数据集上进行了验证。研究验证了 Conv-CA 方法明显优于基于 TRCA 的方法。此外,Conv-CA 具有良好的可解释性,因为其相关层的输入可以进行分析,以可视化模型从数据中学到的内容。Conv-CA 是空间滤波器的非线性扩展。其 CNN 结构可以进一步探索和调整,以达到更好的性能。结合神经网络和无监督特征的结构有可能应用于其他信号的分类。