Suppr超能文献

基于复值卷积神经网络的稳态视觉诱发电位分类。

Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.

机构信息

Department of Computer and Network Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan.

出版信息

Sensors (Basel). 2021 Aug 6;21(16):5309. doi: 10.3390/s21165309.

Abstract

The steady-state visual evoked potential (SSVEP), which is a kind of event-related potential in electroencephalograms (EEGs), has been applied to brain-computer interfaces (BCIs). SSVEP-based BCIs currently perform the best in terms of information transfer rate (ITR) among various BCI implementation methods. Canonical component analysis (CCA) or spectrum estimation, such as the Fourier transform, and their extensions have been used to extract features of SSVEPs. However, these signal extraction methods have a limitation in the available stimulation frequency; thus, the number of commands is limited. In this paper, we propose a complex valued convolutional neural network (CVCNN) to overcome the limitation of SSVEP-based BCIs. The experimental results demonstrate that the proposed method overcomes the limitation of the stimulation frequency, and it outperforms conventional SSVEP feature extraction methods.

摘要

稳态视觉诱发电位(SSVEP)是脑电图(EEG)中的一种事件相关电位,已被应用于脑机接口(BCI)。在各种 BCI 实现方法中,基于 SSVEP 的 BCI 在信息传输率(ITR)方面表现最佳。典型相关分析(CCA)或频谱估计,如傅里叶变换及其扩展,已被用于提取 SSVEP 的特征。然而,这些信号提取方法在可用刺激频率方面存在局限性;因此,命令的数量是有限的。在本文中,我们提出了一种复值卷积神经网络(CVCNN)来克服基于 SSVEP 的 BCI 的局限性。实验结果表明,所提出的方法克服了刺激频率的限制,并且优于传统的 SSVEP 特征提取方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bdc/8398418/f31775853739/sensors-21-05309-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验