Suppr超能文献

[稳态视觉诱发电位频率识别方法的研究进展与展望]

[Progresses and prospects on frequency recognition methods for steady-state visual evoked potential].

作者信息

Zhang Yangsong, Xia Min, Chen Ke, Xu Peng, Yao Dezhong

机构信息

School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.

MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Feb 25;39(1):192-197. doi: 10.7507/1001-5515.202102031.

Abstract

Steady-state visual evoked potential (SSVEP) is one of the commonly used control signals in brain-computer interface (BCI) systems. The SSVEP-based BCI has the advantages of high information transmission rate and short training time, which has become an important branch of BCI research field. In this review paper, the main progress on frequency recognition algorithm for SSVEP in past five years are summarized from three aspects, i.e., unsupervised learning algorithms, supervised learning algorithms and deep learning algorithms. Finally, some frontier topics and potential directions are explored.

摘要

稳态视觉诱发电位(SSVEP)是脑机接口(BCI)系统中常用的控制信号之一。基于SSVEP的BCI具有信息传输速率高和训练时间短的优点,已成为BCI研究领域的一个重要分支。在这篇综述论文中,从无监督学习算法、监督学习算法和深度学习算法三个方面总结了过去五年中SSVEP频率识别算法的主要进展。最后,探讨了一些前沿课题和潜在方向。

相似文献

2
[A review of researches on decoding algorithms of steady-state visual evoked potentials].[稳态视觉诱发电位解码算法的研究综述]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Apr 25;39(2):416-425. doi: 10.7507/1001-5515.202111066.

本文引用的文献

1
A Deep Neural Network for SSVEP-Based Brain-Computer Interfaces.基于 SSVEP 的脑机接口的深度神经网络。
IEEE Trans Biomed Eng. 2022 Feb;69(2):932-944. doi: 10.1109/TBME.2021.3110440. Epub 2022 Jan 20.
5
High-performance brain-to-text communication via handwriting.通过手写实现高性能的脑-文本通信。
Nature. 2021 May;593(7858):249-254. doi: 10.1038/s41586-021-03506-2. Epub 2021 May 12.
7
Convolutional Correlation Analysis for Enhancing the Performance of SSVEP-Based Brain-Computer Interface.卷积相关分析增强基于 SSVEP 的脑机接口性能
IEEE Trans Neural Syst Rehabil Eng. 2020 Dec;28(12):2681-2690. doi: 10.1109/TNSRE.2020.3038718. Epub 2021 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验