文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

植物乳杆菌 TA4 细胞生物质及其上清液合成氧化锌纳米粒子及其抗菌和生物相容性。

Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties.

机构信息

Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.

Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.

出版信息

Sci Rep. 2020 Nov 17;10(1):19996. doi: 10.1038/s41598-020-76402-w.


DOI:10.1038/s41598-020-76402-w
PMID:33204003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7673015/
Abstract

This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.

摘要

本研究旨在利用耐锌植物乳杆菌 TA4 的细胞生物质 (CB) 和上清液 (CFS) 作为潜在的纳米工厂来合成 ZnO NPs。生物合成的 ZnO NPs-CFS 和 ZnO NPs-CB 的表面等离子体共振分别为 349nm 和 351nm,从而证实了 ZnO NPs 的形成。FTIR 分析表明,生物合成的 ZnO NPs 表面存在蛋白质、羧基和羟基,它们作为还原剂和稳定剂。DLS 分析表明,两种 ZnO NPs 的多分散指数均小于 0.4。此外,生物合成 ZnO NPs 的 HR-TEM 显微照片显示 ZnO NPs-CFS 呈花状,而 ZnO NPs-CB 呈不规则形状,粒径分别为 291.1nm 和 191.8nm。在这项研究中,生物合成的 ZnO NPs 表现出对致病菌的浓度依赖性抗菌活性,并在特定浓度下对 Vero 细胞系表现出生物相容性。总的来说,植物乳杆菌 TA4 的 CFS 和 CB 可以潜在地用作 ZnO NPs 生物合成的纳米工厂。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/edd5c10194c5/41598_2020_76402_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/2a5893dabc14/41598_2020_76402_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/a141c2afccfc/41598_2020_76402_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/cb78c41479a3/41598_2020_76402_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/88990892865f/41598_2020_76402_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/e452f3e5be30/41598_2020_76402_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/7b193068c994/41598_2020_76402_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/ce289cf04acd/41598_2020_76402_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/c6a54ea2a275/41598_2020_76402_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/0cc5089b24a1/41598_2020_76402_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/edd5c10194c5/41598_2020_76402_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/2a5893dabc14/41598_2020_76402_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/a141c2afccfc/41598_2020_76402_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/cb78c41479a3/41598_2020_76402_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/88990892865f/41598_2020_76402_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/e452f3e5be30/41598_2020_76402_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/7b193068c994/41598_2020_76402_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/ce289cf04acd/41598_2020_76402_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/c6a54ea2a275/41598_2020_76402_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/0cc5089b24a1/41598_2020_76402_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/36c3/7673015/edd5c10194c5/41598_2020_76402_Fig10_HTML.jpg

相似文献

[1]
Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties.

Sci Rep. 2020-11-17

[2]
Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4.

Microb Cell Fact. 2020-1-15

[3]
Biosynthesis of Zinc Oxide Nanoparticles by spp. and Investigation of their Antimicrobial Effect.

Curr Drug Discov Technol. 2023

[4]
Synthesis of ZnO nanoparticles using insulin-rich leaf extract: Anti-diabetic, antibiofilm and anti-oxidant properties.

J Photochem Photobiol B. 2019-6-25

[5]
Biofabrication and characterization of cyanobacteria derived ZnO NPs for their bioactivity comparison with commercial chemically synthesized nanoparticles.

Bioorg Chem. 2021-8

[6]
Green Synthesis of Zinc Oxide Nanoparticles Using Pomegranate Fruit Peel and Solid Coffee Grounds vs. Chemical Method of Synthesis, with Their Biocompatibility and Antibacterial Properties Investigation.

Molecules. 2022-2-12

[7]
Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from and Its Nanoantibiotic Potential.

Int J Nanomedicine. 2020-11-2

[8]
Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation.

Int J Pharm. 2021-9-5

[9]
Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential.

Sci Rep. 2020-6-3

[10]
Paraclostridium benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications.

Oxid Med Cell Longev. 2022

引用本文的文献

[1]
Current overview of the mechanistic pathways and influence of physicochemical parameters on the microbial synthesis and applications of metallic nanoparticles.

Bioprocess Biosyst Eng. 2025-6-25

[2]
Mycosynthesis of zinc oxide nanoparticles using Mucor racemosus with their antimicrobial, antibiofilm, anticancer and antioxidant activities.

Sci Rep. 2025-5-29

[3]
Characterization of ZnO nanoparticles synthesized using probiotic GP258.

Beilstein J Nanotechnol. 2025-1-30

[4]
Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria.

Appl Microbiol Biotechnol. 2025-1-29

[5]
Mycosynthesis of zinc sulfide/zinc oxide nanocomposite using Fusarium oxysporum for catalytic degradation of methylene blue dye, antimicrobial, and anticancer activities.

Sci Rep. 2024-12-31

[6]
The effect of biosynthesized zinc oxide nanoparticles on gene expression and apoptosis in triple-negative breast cancer cells.

Daru. 2024-12-28

[7]
Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review.

Int J Nanomedicine. 2024-12-3

[8]
Biopolymer-based oral films integrated with probiotic active compounds for improved health applications.

Arch Microbiol. 2024-11-28

[9]
Bioconjugation of Serratiopeptidase with Titanium Oxide Nanoparticles: Improving Stability and Antibacterial Properties.

J Funct Biomater. 2024-10-7

[10]
Advances in antibacterial activity of zinc oxide nanoparticles against (Review).

Biomed Rep. 2024-8-30

本文引用的文献

[1]
A bio-inspired strategy for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the cell extract of cyanobacterium sp. EA03: from biological function to toxicity evaluation.

RSC Adv. 2019-7-29

[2]
Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4.

Microb Cell Fact. 2020-1-15

[3]
Synthesis of Silver Nanoparticles Mediated by Fungi: A Review.

Front Bioeng Biotechnol. 2019-10-22

[4]
ZnO Nanostructures and Electrospun ZnO-Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications.

Nanomaterials (Basel). 2019-10-12

[5]
Green Bio-Assisted Synthesis, Characterization and Biological Evaluation of Biocompatible ZnO NPs Synthesized from Different Tissues of Milk Thistle ().

Nanomaterials (Basel). 2019-8-16

[6]
Fungal formation of selenium and tellurium nanoparticles.

Appl Microbiol Biotechnol. 2019-7-20

[7]
Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review.

J Anim Sci Biotechnol. 2019-7-9

[8]
Phytofabrication of Selenium Nanoparticles From Fruit Extract and Exploring Its Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility.

Front Microbiol. 2019-4-30

[9]
A multiparametric study of gold nanoparticles cytotoxicity, internalization and permeability using an model of blood-brain barrier. Influence of size, shape and capping agent.

Nanotoxicology. 2019-6-8

[10]
Phycosynthesis and Enhanced Photocatalytic Activity of Zinc Oxide Nanoparticles Toward Organosulfur Pollutants.

Sci Rep. 2019-5-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索