文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

产苯梭菌介导的氧化锌纳米粒子及其在体内的多种生物学应用。

Paraclostridium benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications.

机构信息

Department of Health and Biological Sciences, Abasyn University, Peshawar 25000 KPK, Pakistan.

Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda, 24460 KPK, Pakistan.

出版信息

Oxid Med Cell Longev. 2022 May 5;2022:5994033. doi: 10.1155/2022/5994033. eCollection 2022.


DOI:10.1155/2022/5994033
PMID:35571251
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9098347/
Abstract

We presented a low-cost, eco-friendly, and efficient bacterium-mediated synthesis of zinc oxide nanoparticles (ZnO-NPs) utilizing Paraclostridium benzoelyticum strain 5610 as a capping and reducing agent. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, energy-dispersive X-ray, and UV-vis spectroscopy were used to physiochemically characterize the biosynthesized ZnO-NPs. A major narrow peak at 441 nm was observed using UV-visible spectroscopy, verifying the presence of nanoparticles. According to SEM and TEM studies, the average dimensions of ZnO-NPs was 50 nm. The crystal size of 48.22 nm was determined by XRD analysis. FTIR analysis confirmed the presence of various reducing metabolites on the surface of ZnO-NPs. The synthesized nanoparticles were investigated for biological activity against Helicobacter suis, Helicobacter bizzozeronii, Helicobacter felis, and Helicobacter salomonis. Helicobacter suis was the most vulnerable strain, with an inhibitory zone of 19.53 ± 0.62 mm at 5 mg/mL dosage. The anti-inflammatory and the findings of the rat paw edema experiments revealed that the bacterium-mediated ZnO-NPs had a strong inhibitory action. In the arthritis model, the solution of ZnO-NPs showed 87.62 ± 0.12% inhibitory effect of edema after 21 days when linked with that of the standard drug. In the antidiabetic assay, ZnO-NPs sharply reduced glucose level in STZ-induced diabetic mice. In this study, the particle biocompatibility by human red blood cells was also determined. Keeping in view the biological importance of ZnO-NPs, we may readily get the conclusion that Paraclostridium benzoelyticum strain 5610-mediated ZnO-NPs will be a prospective antidiabetic, antibacterial, antiarthritic, and anti-inflammatory agent in vivo experimental models and can be used as a potent antidiabetic drug.

摘要

我们利用产丁酸梭菌 5610 作为封端和还原剂,提出了一种低成本、环保且高效的细菌介导合成氧化锌纳米粒子(ZnO-NPs)的方法。利用扫描电子显微镜、X 射线衍射、傅里叶变换红外光谱、能量色散 X 射线和紫外可见光谱对生物合成的 ZnO-NPs 进行了物理化学表征。使用紫外可见光谱观察到 441nm 处的一个主要窄峰,证明了纳米粒子的存在。根据 SEM 和 TEM 研究,ZnO-NPs 的平均尺寸为 50nm。XRD 分析确定了 ZnO-NPs 的晶体尺寸为 48.22nm。FTIR 分析证实了 ZnO-NPs 表面存在各种还原代谢物。研究了合成的纳米粒子对猪源螺杆菌、双歧螺杆菌、猫螺杆菌和所罗门螺杆菌的生物活性。猪源螺杆菌是最脆弱的菌株,在 5mg/mL 剂量下,抑菌圈为 19.53±0.62mm。在抗炎和大鼠爪肿胀实验中发现,细菌介导的 ZnO-NPs 具有很强的抑制作用。在关节炎模型中,ZnO-NPs 溶液在第 21 天与标准药物结合后,对水肿的抑制作用达到 87.62±0.12%。在糖尿病检测中,ZnO-NPs 可显著降低 STZ 诱导的糖尿病小鼠的血糖水平。在这项研究中,还通过人红细胞确定了颗粒的生物相容性。鉴于 ZnO-NPs 的生物学重要性,我们可以得出结论,产丁酸梭菌 5610 介导的 ZnO-NPs 将成为体内实验模型中具有前景的抗糖尿病、抗菌、抗关节炎和抗炎药物,并可作为一种有效的抗糖尿病药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/1cb5ca2a8f95/OMCL2022-5994033.017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/a3eaabd35605/OMCL2022-5994033.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/3032aac0378a/OMCL2022-5994033.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/58f56eb532be/OMCL2022-5994033.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/d7dda0125d4f/OMCL2022-5994033.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/ce9807d8467e/OMCL2022-5994033.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/7555f7dd3003/OMCL2022-5994033.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/691344173d69/OMCL2022-5994033.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/4cf34d88c15b/OMCL2022-5994033.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/d0d4c0172345/OMCL2022-5994033.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/6189e0eed180/OMCL2022-5994033.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/a656fa1c9158/OMCL2022-5994033.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/84b77f079bfb/OMCL2022-5994033.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/eb47e99efee7/OMCL2022-5994033.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/37f657a398da/OMCL2022-5994033.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/c34316072fa2/OMCL2022-5994033.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/2681092f9d94/OMCL2022-5994033.016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/1cb5ca2a8f95/OMCL2022-5994033.017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/a3eaabd35605/OMCL2022-5994033.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/3032aac0378a/OMCL2022-5994033.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/58f56eb532be/OMCL2022-5994033.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/d7dda0125d4f/OMCL2022-5994033.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/ce9807d8467e/OMCL2022-5994033.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/7555f7dd3003/OMCL2022-5994033.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/691344173d69/OMCL2022-5994033.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/4cf34d88c15b/OMCL2022-5994033.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/d0d4c0172345/OMCL2022-5994033.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/6189e0eed180/OMCL2022-5994033.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/a656fa1c9158/OMCL2022-5994033.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/84b77f079bfb/OMCL2022-5994033.012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/eb47e99efee7/OMCL2022-5994033.013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/37f657a398da/OMCL2022-5994033.014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/c34316072fa2/OMCL2022-5994033.015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/2681092f9d94/OMCL2022-5994033.016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abb/9098347/1cb5ca2a8f95/OMCL2022-5994033.017.jpg

相似文献

[1]
Paraclostridium benzoelyticum Bacterium-Mediated Zinc Oxide Nanoparticles and Their In Vivo Multiple Biological Applications.

Oxid Med Cell Longev. 2022

[2]
Green synthesis of zinc oxide nanoparticles using novel bacterium strain (Bacillus subtilis NH1-8) and their in vitro antibacterial and antibiofilm activities against Salmonellatyphimurium.

Microb Pathog. 2023-12

[3]
Mycogenic Synthesis of Extracellular Zinc Oxide Nanoparticles from and Its Nanoantibiotic Potential.

Int J Nanomedicine. 2020-11-2

[4]
Biosynthesis and Anti-inflammatory Activity of Zinc Oxide Nanoparticles Using Leaf Extract of .

Biomed Res Int. 2023

[5]
Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.).

Microb Pathog. 2019-4-17

[6]
A novel green preparation of zinc oxide nanoparticles with L.: photocatalytic performance, evaluation of antioxidant and antibacterial activity.

Environ Technol. 2024-2

[7]
Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity.

Sci Rep. 2024-8-24

[8]
Psidium guajav-mediated zinc oxide nanoparticles as a multifunctional, microbicidal, antioxidant and antiproliferative agent against destructive pathogens.

Bioprocess Biosyst Eng. 2024-9

[9]
Affective Antidepressant, Cytotoxic Activities, and Characterization of Phyto-Assisted Zinc Oxide Nanoparticles Synthesized Using Aqueous Extract.

Biomed Res Int. 2022

[10]
Antibacterial efficacy ofleaf extract-enriched zinc oxide and iron doped zinc nanoparticles: a comparative study.

Nanotechnology. 2024-5-7

引用本文的文献

[1]
Mycosynthesis of zinc oxide nanoparticles using Mucor racemosus with their antimicrobial, antibiofilm, anticancer and antioxidant activities.

Sci Rep. 2025-5-29

[2]
Evaluation of potential antiparasitic effect of ZnO nanoparticles on experimental cryptosporidiosis in immunosuppressed mice.

Biometals. 2025-4

[3]
Synthesis, characterization, and evaluation of copper-doped zinc oxide nanoparticles anticancer effects: in vitro and in vivo experiments.

BMC Cancer. 2025-1-8

[4]
Pharmacological properties of biomimetic synthesized silver nanoparticles from endophytic fungus Coniothyrium chaingmaiense: KUMBMDBT-25.

Sci Rep. 2025-1-3

[5]
Harnessing biological synthesis: Zinc oxide nanoparticles for plant biotic stress management.

Front Chem. 2024-7-11

[6]
Psidium guajava-mediated green synthesis of Fe-doped ZnO and Co-doped ZnO nanoparticles: a comprehensive study on characterization and biological applications.

Bioprocess Biosyst Eng. 2024-8

[7]
Synthesis rifaximin with copper (Rif-Cu) and copper oxide (Rif-CuO) nanoparticles Considerable dye decolorization: An application of aerobic oxidation of eco-friendly sustainable approach.

Heliyon. 2024-2-5

[8]
Study of the antimicrobial activity of zinc oxide nanostructures mediated by two morphological structures of leaf extracts of .

Heliyon. 2024-2-7

[9]
Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells.

Sci Rep. 2024-1-25

[10]
Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications.

Pharmaceutics. 2023-11-16

本文引用的文献

[1]
The (Himalayan columbine) mediated synthesis of nanoceria for diverse biomedical applications.

RSC Adv. 2020-5-20

[2]
State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications.

Nanomaterials (Basel). 2022-2-25

[3]
ROS-Generating Amine-Functionalized Magnetic Nanoparticles Coupled with Carboxymethyl Chitosan for pH-Responsive Release of Doxorubicin.

Int J Nanomedicine. 2022

[4]
Prevalence and Antimicrobial Resistance of in Hospital Settings.

Antibiotics (Basel). 2021-12-29

[5]
Green Synthesis of Copper Oxide Nanoparticles Using Leaf Extract and Their Characterization and Investigation of Antimicrobial Potential and Cytotoxic Activities.

Evid Based Complement Alternat Med. 2021-6-18

[6]
Dye degradation, antibacterial and in-silico analysis of Mg/cellulose-doped ZnO nanoparticles.

Int J Biol Macromol. 2021-8-31

[7]
Doping of Mg on ZnO Nanorods Demonstrated Improved Photocatalytic Degradation and Antimicrobial Potential with Molecular Docking Analysis.

Nanoscale Res Lett. 2021-5-1

[8]
Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using Leaf and Root Extracts.

Biomolecules. 2021-2-2

[9]
Microbial Fabrication of Zinc Oxide Nanoparticles and Evaluation of Their Antimicrobial and Photocatalytic Properties.

Front Chem. 2020-9-30

[10]
Edible mushroom (Flammulina velutipes) as biosource for silver nanoparticles: from synthesis to diverse biomedical and environmental applications.

Nanotechnology. 2021-2-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索