Tschuchnig Maximilian E, Oostingh Gertie J, Gadermayr Michael
Department of Information Technologies and Systems Management, Salzburg University of Applied Sciences, 5412 Puch bei Hallein, Austria.
Department of Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch bei Hallein, Austria.
Patterns (N Y). 2020 Sep 11;1(6):100089. doi: 10.1016/j.patter.2020.100089.
Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole-slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine-learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, the so-called generative adversarial networks (GANs) applied to histological image data. Besides improving performance, GANs also enable previously intractable application scenarios in this field. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs, and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications.
数字病理学领域的图像分析近来越来越受欢迎。使用高质量的全切片扫描仪能够快速获取大量图像数据,同时展现出广泛的背景信息和微观细节。与此同时,新颖的机器学习算法提升了图像分析方法的性能。在本文中,我们聚焦于一类特别强大的架构,即应用于组织学图像数据的所谓生成对抗网络(GAN)。除了提高性能之外,GAN还使得该领域之前难以处理的应用场景成为可能。然而,GAN可能存在引入偏差的可能性。在此,我们以一种通用的表示法总结近期的最新进展,介绍GAN的主要应用,并对一些选定的有前景的方法及其可能的未来应用进行展望。此外,我们还识别出目前尚不存在但具有未来应用潜力的方法。