Suppr超能文献

数字病理学中的生成对抗网络:趋势与未来潜力综述

Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential.

作者信息

Tschuchnig Maximilian E, Oostingh Gertie J, Gadermayr Michael

机构信息

Department of Information Technologies and Systems Management, Salzburg University of Applied Sciences, 5412 Puch bei Hallein, Austria.

Department of Biomedical Sciences, Salzburg University of Applied Sciences, 5412 Puch bei Hallein, Austria.

出版信息

Patterns (N Y). 2020 Sep 11;1(6):100089. doi: 10.1016/j.patter.2020.100089.

Abstract

Image analysis in the field of digital pathology has recently gained increased popularity. The use of high-quality whole-slide scanners enables the fast acquisition of large amounts of image data, showing extensive context and microscopic detail at the same time. Simultaneously, novel machine-learning algorithms have boosted the performance of image analysis approaches. In this paper, we focus on a particularly powerful class of architectures, the so-called generative adversarial networks (GANs) applied to histological image data. Besides improving performance, GANs also enable previously intractable application scenarios in this field. However, GANs could exhibit a potential for introducing bias. Hereby, we summarize the recent state-of-the-art developments in a generalizing notation, present the main applications of GANs, and give an outlook of some chosen promising approaches and their possible future applications. In addition, we identify currently unavailable methods with potential for future applications.

摘要

数字病理学领域的图像分析近来越来越受欢迎。使用高质量的全切片扫描仪能够快速获取大量图像数据,同时展现出广泛的背景信息和微观细节。与此同时,新颖的机器学习算法提升了图像分析方法的性能。在本文中,我们聚焦于一类特别强大的架构,即应用于组织学图像数据的所谓生成对抗网络(GAN)。除了提高性能之外,GAN还使得该领域之前难以处理的应用场景成为可能。然而,GAN可能存在引入偏差的可能性。在此,我们以一种通用的表示法总结近期的最新进展,介绍GAN的主要应用,并对一些选定的有前景的方法及其可能的未来应用进行展望。此外,我们还识别出目前尚不存在但具有未来应用潜力的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00da/7660380/904137489919/gr1.jpg

相似文献

1
Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential.
Patterns (N Y). 2020 Sep 11;1(6):100089. doi: 10.1016/j.patter.2020.100089.
2
Generative Adversarial Networks in Digital Pathology and Histopathological Image Processing: A Review.
J Pathol Inform. 2021 Nov 3;12:43. doi: 10.4103/jpi.jpi_103_20. eCollection 2021.
4
A survey on generative adversarial networks for imbalance problems in computer vision tasks.
J Big Data. 2021;8(1):27. doi: 10.1186/s40537-021-00414-0. Epub 2021 Jan 29.
5
Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation.
J Digit Imaging. 2022 Apr;35(2):137-152. doi: 10.1007/s10278-021-00556-w. Epub 2022 Jan 12.
6
3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
Neuroimage. 2018 Jul 1;174:550-562. doi: 10.1016/j.neuroimage.2018.03.045. Epub 2018 Mar 20.
7
Generative modeling for renal microanatomy.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11320. doi: 10.1117/12.2549891. Epub 2020 Mar 16.
8
Generative adversarial networks and its applications in the biomedical image segmentation: a comprehensive survey.
Int J Multimed Inf Retr. 2022;11(3):333-368. doi: 10.1007/s13735-022-00240-x. Epub 2022 Jul 8.
9
Generative adversarial networks for spine imaging: A critical review of current applications.
Eur J Radiol. 2024 Feb;171:111313. doi: 10.1016/j.ejrad.2024.111313. Epub 2024 Jan 12.

引用本文的文献

1
Generative Artificial Intelligence in Prostate Cancer Imaging.
Balkan Med J. 2025 Jul 1;42(4):286-300. doi: 10.4274/balkanmedj.galenos.2025.2025-4-69.
2
Accelerating histopathology workflows with generative AI-based virtually multiplexed tumour profiling.
Nat Mach Intell. 2024;6(9):1077-1093. doi: 10.1038/s42256-024-00889-5. Epub 2024 Sep 9.
5
An interpretable deep learning model for identifying the morphological characteristics of dMMR/MSI-H gastric cancer.
iScience. 2024 Feb 16;27(3):109243. doi: 10.1016/j.isci.2024.109243. eCollection 2024 Mar 15.
7
Use of Novel Open-Source Deep Learning Platform for Quantification of Ki-67 in Neuroendocrine Tumors - Analytical Validation.
Int J Gen Med. 2023 Dec 4;16:5665-5673. doi: 10.2147/IJGM.S443952. eCollection 2023.
8
A Spitzoid Tumor dataset with clinical metadata and Whole Slide Images for Deep Learning models.
Sci Data. 2023 Oct 16;10(1):704. doi: 10.1038/s41597-023-02585-2.
9
Plantorganelle Hunter is an effective deep-learning-based method for plant organelle phenotyping in electron microscopy.
Nat Plants. 2023 Oct;9(10):1760-1775. doi: 10.1038/s41477-023-01527-5. Epub 2023 Sep 25.
10
Deep learning generates synthetic cancer histology for explainability and education.
NPJ Precis Oncol. 2023 May 29;7(1):49. doi: 10.1038/s41698-023-00399-4.

本文引用的文献

1
Robust Histopathology Image Analysis: to Label or to Synthesize?
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:8533-8542. doi: 10.1109/CVPR.2019.00873. Epub 2020 Jan 9.
2
Attention-Aware Discrimination for MR-to-CT Image Translation Using Cycle-Consistent Generative Adversarial Networks.
Radiol Artif Intell. 2020 Mar 25;2(2):e190027. doi: 10.1148/ryai.2020190027. eCollection 2020 Mar.
4
Synthesis of diagnostic quality cancer pathology images by generative adversarial networks.
J Pathol. 2020 Oct;252(2):178-188. doi: 10.1002/path.5509. Epub 2020 Sep 8.
5
Deep Learning for Whole Slide Image Analysis: An Overview.
Front Med (Lausanne). 2019 Nov 22;6:264. doi: 10.3389/fmed.2019.00264. eCollection 2019.
7
Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images.
IEEE Trans Med Imaging. 2020 Nov;39(11):3257-3267. doi: 10.1109/TMI.2019.2927182. Epub 2020 Oct 28.
9
Trends in the US and Canadian Pathologist Workforces From 2007 to 2017.
JAMA Netw Open. 2019 May 3;2(5):e194337. doi: 10.1001/jamanetworkopen.2019.4337.
10
MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks.
Med Phys. 2019 Aug;46(8):3565-3581. doi: 10.1002/mp.13617. Epub 2019 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验