Go Heounjeong
Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Brain Tumor Res Treat. 2022 Apr;10(2):76-82. doi: 10.14791/btrt.2021.0032.
Digital pathology is revolutionizing pathology. The introduction of digital pathology made it possible to comprehensively change the pathology diagnosis workflow, apply and develop pathological artificial intelligence (AI) models, generate pathological big data, and perform telepathology. AI algorithms, including machine learning and deep learning, are used for the detection, segmentation, registration, processing, and classification of digitized pathological images. Pathological AI algorithms can be helpfully utilized for diagnostic screening, morphometric analysis of biomarkers, the discovery of new meanings of prognosis and therapeutic response in pathological images, and improvement of diagnostic efficiency. In order to develop a successful pathological AI model, it is necessary to consider the selection of a suitable type of image for a subject, utilization of big data repositories, the setting of an effective annotation strategy, image standardization, and color normalization. This review will elaborate on the advantages and perspectives of digital pathology, AI-based approaches, the applications in pathology, and considerations and challenges in the development of pathological AI models.
数字病理学正在彻底改变病理学。数字病理学的引入使得全面改变病理学诊断工作流程、应用和开发病理人工智能(AI)模型、生成病理大数据以及开展远程病理学成为可能。包括机器学习和深度学习在内的AI算法被用于数字化病理图像的检测、分割、配准、处理和分类。病理AI算法可有效地用于诊断筛查、生物标志物的形态计量分析、病理图像中预后和治疗反应新意义的发现以及诊断效率的提高。为了开发成功的病理AI模型,有必要考虑为某个主题选择合适的图像类型、利用大数据存储库、设置有效的标注策略、图像标准化和颜色归一化。本综述将详细阐述数字病理学的优势和前景、基于AI的方法、在病理学中的应用以及病理AI模型开发中的注意事项和挑战。