Suppr超能文献

连接长期生态研究的数据格局:SPI-Birds 数据中心。

Connecting the data landscape of long-term ecological studies: The SPI-Birds data hub.

机构信息

Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.

Department of Biology, University of Antwerp, Antwerp, Belgium.

出版信息

J Anim Ecol. 2021 Sep;90(9):2147-2160. doi: 10.1111/1365-2656.13388. Epub 2020 Dec 4.

Abstract

The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.

摘要

不同科学领域的数据整合和综合由于缺乏标准和网络计划而大大减缓和受阻。单独标记动物的长期研究也不例外。这些研究特别重要,因为它们是理解野外进化和生态过程的工具。此外,它们的数量和全球分布为评估模式的普遍性和解决广泛的全球问题(例如气候变化)提供了独特的机会。为了解决数据集成问题,并为基于鸟类长期研究的生态和进化研究提供新的规模,我们创建了 SPI-Birds 网络和数据库(www.spibirds.org)-这是一项大规模的倡议,连接了来自野外种群的个体识别(通常是环志)鸟类研究的数据和研究人员。在 SPI-Birds 成立后的一年半时间里,已经招募了 120 多名成员,目前拥有近 150 万只个体鸟类的数据,这些鸟类来自 80 个种群,累计时间超过 2000 年。SPI-Birds 充当数据中心和研究种群目录。它防止数据丢失,确保轻松查找、使用和集成数据,从而促进协作和综合。我们提供社区派生的数据和元数据标准,并在可发现性、可访问性、互操作性和可重用性(FAIR)原则的指导下,以及与现有元数据语言(例如生态元数据语言)保持一致,提高数据完整性。SPI-Birds 的分散方法引起了社区的积极参与:研究小组保留对数据使用和数据管理方式的完全控制,而 SPI-Birds 创建定制的管道,将每个独特的数据格式转换为标准格式。我们总结了经验教训,以便其他社区(例如从事其他分类群研究的社区)可以采用我们成功的模式。创建特定于社区的中心(例如我们的中心、动物种群动态研究的 COMADRE 等)将有助于急需的大规模生态数据集成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44bc/8518542/9c52f6286dbd/JANE-90-2147-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验