Suppr超能文献

用于预测心力衰竭再入院和死亡率的机器学习与传统统计模型对比

Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality.

作者信息

Shin Sheojung, Austin Peter C, Ross Heather J, Abdel-Qadir Husam, Freitas Cassandra, Tomlinson George, Chicco Davide, Mahendiran Meera, Lawler Patrick R, Billia Filio, Gramolini Anthony, Epelman Slava, Wang Bo, Lee Douglas S

机构信息

University of Toronto, ICES, Rm G-106, 2075 Bayview Ave., Toronto, ON, M4G2E1, Canada.

出版信息

ESC Heart Fail. 2021 Feb;8(1):106-115. doi: 10.1002/ehf2.13073. Epub 2020 Nov 17.

Abstract

AIMS

This study aimed to review the performance of machine learning (ML) methods compared with conventional statistical models (CSMs) for predicting readmission and mortality in patients with heart failure (HF) and to present an approach to formally evaluate the quality of studies using ML algorithms for prediction modelling.

METHODS AND RESULTS

Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we performed a systematic literature search using MEDLINE, EPUB, Cochrane CENTRAL, EMBASE, INSPEC, ACM Library, and Web of Science. Eligible studies included primary research articles published between January 2000 and July 2020 comparing ML and CSMs in mortality and readmission prognosis of initially hospitalized HF patients. Data were extracted and analysed by two independent reviewers. A modified CHARMS checklist was developed in consultation with ML and biostatistics experts for quality assessment and was utilized to evaluate studies for risk of bias. Of 4322 articles identified and screened by two independent reviewers, 172 were deemed eligible for a full-text review. The final set comprised 20 articles and 686 842 patients. ML methods included random forests (n = 11), decision trees (n = 5), regression trees (n = 3), support vector machines (n = 9), neural networks (n = 12), and Bayesian techniques (n = 3). CSMs included logistic regression (n = 16), Cox regression (n = 3), or Poisson regression (n = 3). In 15 studies, readmission was examined at multiple time points ranging from 30 to 180 day readmission, with the majority of studies (n = 12) presenting prediction models for 30 day readmission outcomes. Of a total of 21 time-point comparisons, ML-derived c-indices were higher than CSM-derived c-indices in 16 of the 21 comparisons. In seven studies, mortality was examined at 9 time points ranging from in-hospital mortality to 1 year survival; of these nine, seven reported higher c-indices using ML. Two of these seven studies reported survival analyses utilizing random survival forests in their ML prediction models. Both reported higher c-indices when using ML compared with CSMs. A limitation of studies using ML techniques was that the majority were not externally validated, and calibration was rarely assessed. In the only study that was externally validated in a separate dataset, ML was superior to CSMs (c-indices 0.913 vs. 0.835).

CONCLUSIONS

ML algorithms had better discrimination than CSMs in most studies aiming to predict risk of readmission and mortality in HF patients. Based on our review, there is a need for external validation of ML-based studies of prediction modelling. We suggest that ML-based studies should also be evaluated using clinical quality standards for prognosis research. Registration: PROSPERO CRD42020134867.

摘要

目的

本研究旨在比较机器学习(ML)方法与传统统计模型(CSM)在预测心力衰竭(HF)患者再入院和死亡率方面的性能,并提出一种正式评估使用ML算法进行预测建模的研究质量的方法。

方法与结果

按照系统评价和Meta分析的首选报告项目指南,我们使用MEDLINE、EPUB、Cochrane CENTRAL、EMBASE、INSPEC、ACM图书馆和科学网进行了系统的文献检索。符合条件的研究包括2000年1月至2020年7月发表的比较ML和CSM在首次住院HF患者死亡率和再入院预后方面的主要研究文章。数据由两名独立评审员提取和分析。与ML和生物统计学专家协商制定了一份修改后的CHARM清单用于质量评估,并用于评估研究的偏倚风险。在两名独立评审员识别和筛选的4322篇文章中,172篇被认为有资格进行全文评审。最终纳入20篇文章和686842名患者。ML方法包括随机森林(n = 11)、决策树(n = 5)、回归树(n = 3)、支持向量机(n = 9)、神经网络(n = 12)和贝叶斯技术(n = 3)。CSM包括逻辑回归(n = 16)、Cox回归(n = 3)或泊松回归(n = 3)。在15项研究中,在30至180天再入院的多个时间点检查再入院情况,大多数研究(n = 12)呈现了30天再入院结局的预测模型。在总共21个时间点比较中,21个比较中有16个ML得出的c指数高于CSM得出的c指数。在7项研究中,在从住院死亡率到1年生存率的9个时间点检查死亡率;在这9项研究中,7项报告使用ML时c指数更高。这7项研究中有2项报告在其ML预测模型中使用随机生存森林进行生存分析。两项研究均报告使用ML时比CSM的c指数更高。使用ML技术的研究的一个局限性是大多数未进行外部验证,并且很少评估校准。在唯一一项在单独数据集中进行外部验证的研究中,ML优于CSM(c指数0.913对0.835)。

结论

在大多数旨在预测HF患者再入院和死亡率风险的研究中,ML算法比CSM具有更好的区分能力。根据我们的综述,基于ML的预测建模研究需要进行外部验证。我们建议基于ML的研究也应使用预后研究的临床质量标准进行评估。注册:PROSPERO CRD42020134867。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a63a/7835549/f674d6e21e24/EHF2-8-106-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验