Wang Longlong, Mukherjee Ayan, Kuo Chang-Yang, Chakrabarty Sankalpita, Yemini Reut, Dameron Arrelaine A, DuMont Jaime W, Akella Sri Harsha, Saha Arka, Taragin Sarah, Aviv Hagit, Naveh Doron, Sharon Daniel, Chan Ting-Shan, Lin Hong-Ji, Lee Jyh-Fu, Chen Chien-Te, Liu Boyang, Gao Xiangwen, Basu Suddhasatwa, Hu Zhiwei, Aurbach Doron, Bruce Peter G, Noked Malachi
Department of Chemistry and Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel.
Department of Materials, University of Oxford, Oxford, UK.
Nat Nanotechnol. 2024 Feb;19(2):208-218. doi: 10.1038/s41565-023-01519-8. Epub 2023 Oct 5.
A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O synthesis and subsequent atomic layer deposition of a unique ultrathin LiAlZnO protective layer comprising a LiAlZnO surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm), a high specific cathode capacity (203 mAh g), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.
全固态锂电池(ASSLB)开发中当前一个关键的挑战是在不影响性能的情况下降低制造成本。在此,我们报道了一种基于高能、无钴LiNiO阴极且具有坚固由外而内结构的硫化物ASSLB。这种有前景的阴极通过高压O合成以及随后对包含LiAlZnO表面涂层区域和Al与Zn近表面掺杂区域的独特超薄LiAlZnO保护层进行原子层沉积得以实现。这种高质量的人工界面增强了阴极的结构稳定性和界面动力学,因为它减轻了阴极/固体电解质界面处的接触损失和持续的副反应。结果,我们的ASSLB展现出高面积容量(4.65 mAh cm)、高比阴极容量(203 mAh g)、优异的循环稳定性(200次循环后容量保持率为92%)以及良好的倍率性能(在2C时为93 mAh g)。这项工作还提供了关于如何突破使用昂贵阴极(例如钴基)和涂层(例如铌基、钽基、镧基或锆基)的限制同时仍实现高能ASSLB性能的机理见解。