Mendez Derek, Bolotovsky Robert, Bhowmick Asmit, Brewster Aaron S, Kern Jan, Yano Junko, Holton James M, Sauter Nicholas K
Molecular Biophysics and Integrated Bioimaging Division (MBIB), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
IUCrJ. 2020 Oct 24;7(Pt 6):1151-1167. doi: 10.1107/S2052252520013007. eCollection 2020 Nov 1.
Most crystallographic data processing methods use pixel integration. In serial femtosecond crystallography (SFX), the intricate interaction between the reciprocal lattice point and the Ewald sphere is integrated out by averaging symmetrically equivalent observations recorded across a large number (10-10) of exposures. Although sufficient for generating biological insights, this approach converges slowly, and using it to accurately measure anomalous differences has proved difficult. This report presents a novel approach for increasing the accuracy of structure factors obtained from SFX data. A physical model describing all observed pixels is defined to a degree of complexity such that it can decouple the various contributions to the pixel intensities. Model dependencies include lattice orientation, unit-cell dimensions, mosaic structure, incident photon spectra and structure factor amplitudes. Maximum likelihood estimation is used to optimize all model parameters. The application of prior knowledge that structure factor amplitudes are positive quantities is included in the form of a reparameterization. The method is tested using a synthesized SFX dataset of ytterbium(III) lysozyme, where each X-ray laser pulse energy is centered at 9034 eV. This energy is 100 eV above the Yb -III absorption edge, so the anomalous difference signal is stable at 10 electrons despite the inherent energy jitter of each femtosecond X-ray laser pulse. This work demonstrates that this approach allows the determination of anomalous structure factors with very high accuracy while requiring an order-of-magnitude fewer shots than conventional integration-based methods would require to achieve similar results.
大多数晶体学数据处理方法都采用像素积分。在串行飞秒晶体学(SFX)中,通过对大量(10 - 10)次曝光中记录的对称等效观测值进行平均,消除了倒易晶格点与埃瓦尔德球之间复杂的相互作用。尽管这种方法足以产生生物学见解,但它收敛缓慢,并且事实证明,使用它来精确测量反常差异很困难。本报告提出了一种提高从SFX数据获得的结构因子准确性的新方法。定义了一个描述所有观测像素的物理模型,其复杂度足以解耦对像素强度的各种贡献。模型的依赖因素包括晶格取向、晶胞尺寸、镶嵌结构、入射光子光谱和结构因子振幅。使用最大似然估计来优化所有模型参数。以重新参数化的形式纳入了结构因子振幅为正量的先验知识。该方法使用合成的镱(III)溶菌酶SFX数据集进行了测试,其中每个X射线激光脉冲能量集中在9034 eV。该能量比Yb - III吸收边高100 eV,因此尽管每个飞秒X射线激光脉冲存在固有的能量抖动,但反常差异信号在10个电子时是稳定的。这项工作表明,这种方法能够以非常高的精度确定反常结构因子,并同时所需的曝光次数比传统基于积分的方法要少一个数量级才能获得类似结果。