Suppr超能文献

模拟解析大分子衍射。

Interpreting macromolecular diffraction through simulation.

机构信息

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States.

出版信息

Methods Enzymol. 2023;688:195-222. doi: 10.1016/bs.mie.2023.06.011. Epub 2023 Aug 10.

Abstract

This chapter discusses the use of diffraction simulators to improve experimental outcomes in macromolecular crystallography, in particular for future experiments aimed at diffuse scattering. Consequential decisions for upcoming data collection include the selection of either a synchrotron or free electron laser X-ray source, rotation geometry or serial crystallography, and fiber-coupled area detector technology vs. pixel-array detectors. The hope is that simulators will provide insights to make these choices with greater confidence. Simulation software, especially those packages focused on physics-based calculation of the diffraction, can help to predict the location, size, shape, and profile of Bragg spots and diffuse patterns in terms of an underlying physical model, including assumptions about the crystal's mosaic structure, and therefore can point to potential issues with data analysis in the early planning stages. Also, once the data are collected, simulation may offer a pathway to improve the measurement of diffraction, especially with weak data, and might help to treat problematic cases such as overlapping patterns.

摘要

这一章讨论了使用衍射模拟器来提高大分子晶体学实验结果的质量,特别是对于未来旨在研究漫散射的实验。即将到来的数据采集的重要决定包括选择同步加速器或自由电子激光 X 射线源、旋转几何形状或连续晶体学,以及纤维耦合面探测器技术与像素阵列探测器。希望模拟器能够提供更多的见解,使这些选择更加有信心。模拟软件,特别是那些专注于基于物理计算的衍射的软件包,可以帮助根据基本物理模型预测布拉格斑点和漫散射模式的位置、大小、形状和轮廓,包括对晶体镶嵌结构的假设,因此可以在早期规划阶段指出数据分析中潜在的问题。此外,一旦收集到数据,模拟可能为提高衍射的测量提供途径,特别是对于弱数据,并且可能有助于处理重叠模式等有问题的情况。

相似文献

1
Interpreting macromolecular diffraction through simulation.模拟解析大分子衍射。
Methods Enzymol. 2023;688:195-222. doi: 10.1016/bs.mie.2023.06.011. Epub 2023 Aug 10.
2
Simulation of X-ray frames from macromolecular crystals using a ray-tracing approach.使用光线追踪方法对大分子晶体的X射线帧进行模拟。
Acta Crystallogr D Biol Crystallogr. 2009 Jun;65(Pt 6):535-42. doi: 10.1107/S0907444909010282. Epub 2009 May 15.
3
Processing macromolecular diffuse scattering data.处理大分子漫散射数据。
Methods Enzymol. 2023;688:43-86. doi: 10.1016/bs.mie.2023.06.010. Epub 2023 Aug 25.
5
Instrumentation for synchrotron-radiation macromolecular crystallography.用于同步辐射大分子晶体学的仪器设备。
Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):12-8. doi: 10.1107/S0907444905039570. Epub 2005 Dec 14.
7
Deep residual networks for crystallography trained on synthetic data.基于合成数据训练的晶体学深度残差网络。
Acta Crystallogr D Struct Biol. 2024 Jan 1;80(Pt 1):26-43. doi: 10.1107/S2059798323010586.

本文引用的文献

1
Crystal diffraction prediction and partiality estimation using Gaussian basis functions.使用高斯基函数进行晶体衍射预测和偏性估计。
Acta Crystallogr A Found Adv. 2023 Mar 1;79(Pt 2):145-162. doi: 10.1107/S2053273323000682. Epub 2023 Feb 17.
6
DIALS: implementation and evaluation of a new integration package.DIALS:一个新集成包的实现和评估。
Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):85-97. doi: 10.1107/S2059798317017235.
7
Bringing diffuse X-ray scattering into focus.将漫散射 X 射线聚焦。
Curr Opin Struct Biol. 2018 Jun;50:109-116. doi: 10.1016/j.sbi.2018.01.009. Epub 2018 Feb 16.
8
X-ray Scattering Studies of Protein Structural Dynamics.蛋白质结构动力学的X射线散射研究。
Chem Rev. 2017 Jun 28;117(12):7615-7672. doi: 10.1021/acs.chemrev.6b00790. Epub 2017 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验