Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States.
Methods Enzymol. 2023;688:195-222. doi: 10.1016/bs.mie.2023.06.011. Epub 2023 Aug 10.
This chapter discusses the use of diffraction simulators to improve experimental outcomes in macromolecular crystallography, in particular for future experiments aimed at diffuse scattering. Consequential decisions for upcoming data collection include the selection of either a synchrotron or free electron laser X-ray source, rotation geometry or serial crystallography, and fiber-coupled area detector technology vs. pixel-array detectors. The hope is that simulators will provide insights to make these choices with greater confidence. Simulation software, especially those packages focused on physics-based calculation of the diffraction, can help to predict the location, size, shape, and profile of Bragg spots and diffuse patterns in terms of an underlying physical model, including assumptions about the crystal's mosaic structure, and therefore can point to potential issues with data analysis in the early planning stages. Also, once the data are collected, simulation may offer a pathway to improve the measurement of diffraction, especially with weak data, and might help to treat problematic cases such as overlapping patterns.
这一章讨论了使用衍射模拟器来提高大分子晶体学实验结果的质量,特别是对于未来旨在研究漫散射的实验。即将到来的数据采集的重要决定包括选择同步加速器或自由电子激光 X 射线源、旋转几何形状或连续晶体学,以及纤维耦合面探测器技术与像素阵列探测器。希望模拟器能够提供更多的见解,使这些选择更加有信心。模拟软件,特别是那些专注于基于物理计算的衍射的软件包,可以帮助根据基本物理模型预测布拉格斑点和漫散射模式的位置、大小、形状和轮廓,包括对晶体镶嵌结构的假设,因此可以在早期规划阶段指出数据分析中潜在的问题。此外,一旦收集到数据,模拟可能为提高衍射的测量提供途径,特别是对于弱数据,并且可能有助于处理重叠模式等有问题的情况。