Institute of Applied Physics "Nello Carrara", Italian National Research Council, via Madonna del Piano 10, Sesto Fiorentino, I-50019, Italy.
Analyst. 2021 Jan 21;146(2):674-682. doi: 10.1039/d0an02137g. Epub 2020 Nov 19.
Establishing standardized methods for a consistent analysis of spectral data remains a largely underexplored aspect in surface-enhanced Raman spectroscopy (SERS), particularly applied to biological and biomedical research. Here we propose an effective machine learning classification of protein species with closely resembled spectral profiles by a mixed data processing based on principal component analysis (PCA) applied to multipeak fitting on SERS spectra. This strategy simultaneously assures a successful discrimination of proteins and a thorough characterization of the chemostructural differences among them, ultimately opening up new routes for SERS evolution toward sensing applications and diagnostics of interest in life sciences.
在表面增强拉曼光谱(SERS)分析中,建立标准化方法以实现光谱数据的一致性分析仍然是一个很大程度上尚未得到充分探索的方面,特别是在应用于生物和生物医学研究方面。在这里,我们通过基于主成分分析(PCA)的混合数据处理以及对 SERS 光谱的多峰拟合,提出了一种有效的机器学习方法,用于对具有相似光谱特征的蛋白质种类进行分类。该策略可以同时确保对蛋白质的成功区分,以及对它们之间的化学结构差异进行全面的特征描述,最终为 SERS 朝着生命科学中感兴趣的传感应用和诊断方向的发展开辟了新的途径。