Int J Clin Pharmacol Ther. 2021 Feb;59(2):138-146. doi: 10.5414/CP203800.
Recurrent neural network (RNN) has been demonstrated as a powerful tool for analyzing various types of time series data. There is limited knowledge about the application of the RNN model in the area of pharmacokinetic (PK) and pharmacodynamic (PD) analysis. In this paper, a specific variation of RNN, long short-term memory (LSTM) network, is presented to analyze the simulated PK/PD data of a hypothetical drug.
The plasma concentration and effect level under one dosing regimen were used to train the LSTM model. The developed LSTM model was used to predict the individual PK/PD data under other dosing regimens.
The optimized LSTM model captured temporal dependencies and predicted PD profiles accurately for the simulated indirect PK-PD relationship.
The results demonstrated that the generic LSTM model can approximate the complex underlying mechanistic biological processes.
递归神经网络(RNN)已被证明是分析各种类型时间序列数据的强大工具。关于 RNN 模型在药代动力学(PK)和药效动力学(PD)分析领域的应用,知识有限。在本文中,提出了 RNN 的一种特定变体——长短期记忆(LSTM)网络,用于分析假设药物的模拟 PK/PD 数据。
使用一种给药方案下的血浆浓度和效应水平来训练 LSTM 模型。所开发的 LSTM 模型用于预测其他给药方案下的个体 PK/PD 数据。
优化后的 LSTM 模型准确地捕获了模拟间接 PK-PD 关系的时间依赖性并预测了 PD 曲线。
结果表明,通用 LSTM 模型可以近似复杂的潜在机制生物过程。