Suppr超能文献

苯并咪唑和苯并恶唑锌螯合剂作为金属β-内酰胺酶 NDM-1 的抑制剂。

Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metallo-β-Lactamase NDM-1.

机构信息

Department of Chemistry, Duke University, Durham, NC 27708, USA.

Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

出版信息

ChemMedChem. 2021 Feb 17;16(4):654-661. doi: 10.1002/cmdc.202000607. Epub 2020 Nov 19.

Abstract

Bacterial expression of β-lactamases, which hydrolyze β-lactam antibiotics, contributes to the growing threat of antibacterial drug resistance. Metallo-β-lactamases, such as NDM-1, use catalytic zinc ions in their active sites and hydrolyze nearly all clinically available β-lactam antibiotics. Inhibitors of metallo-β-lactamases are urgently needed to overcome this resistance mechanism. Zinc-binding compounds are promising leads for inhibitor development, as many NDM-1 inhibitors contain zinc-binding pharmacophores. Here, we evaluated 13 chelating agents containing benzimidazole and benzoxazole scaffolds as NDM-1 inhibitors. Six of the compounds showed potent inhibitory activity with IC values as low as 0.38 μM, and several compounds restored the meropenem susceptibility of NDM-1-expressing E. coli. Spectroscopic and docking studies suggest ternary complex formation as the mechanism of inhibition, making these compounds promising for development as NDM-1 inhibitors.

摘要

β-内酰胺酶能够水解β-内酰胺类抗生素,其细菌表达导致了抗菌药物耐药性的不断增加。金属β-内酰胺酶(如 NDM-1)在其活性部位使用催化锌离子,并水解几乎所有临床可用的β-内酰胺类抗生素。迫切需要金属β-内酰胺酶抑制剂来克服这种耐药机制。锌结合化合物是抑制剂开发的有希望的先导化合物,因为许多 NDM-1 抑制剂都含有锌结合药效团。在这里,我们评估了 13 种含有苯并咪唑和苯并恶唑支架的螯合剂作为 NDM-1 抑制剂。其中 6 种化合物表现出很强的抑制活性,IC 值低至 0.38 μM,并且几种化合物恢复了表达 NDM-1 的大肠杆菌对美罗培南的敏感性。光谱和对接研究表明三元复合物的形成是抑制的机制,这使得这些化合物有希望开发为 NDM-1 抑制剂。

相似文献

1
Benzimidazole and Benzoxazole Zinc Chelators as Inhibitors of Metallo-β-Lactamase NDM-1.
ChemMedChem. 2021 Feb 17;16(4):654-661. doi: 10.1002/cmdc.202000607. Epub 2020 Nov 19.
2
Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors.
ACS Infect Dis. 2018 Sep 14;4(9):1407-1422. doi: 10.1021/acsinfecdis.8b00137. Epub 2018 Aug 2.
3
Diaryl-substituted thiosemicarbazone: A potent scaffold for the development of New Delhi metallo-β-lactamase-1 inhibitors.
Bioorg Chem. 2021 Feb;107:104576. doi: 10.1016/j.bioorg.2020.104576. Epub 2020 Dec 22.
4
Mechanistic Investigations of Metallo-β-lactamase Inhibitors: Strong Zinc Binding Is Not Required for Potent Enzyme Inhibition*.
ChemMedChem. 2021 May 18;16(10):1651-1659. doi: 10.1002/cmdc.202100042. Epub 2021 Mar 3.
5
Visualizing the Dynamic Metalation State of New Delhi Metallo-β-lactamase-1 in Bacteria Using a Reversible Fluorescent Probe.
J Am Chem Soc. 2021 Jun 9;143(22):8314-8323. doi: 10.1021/jacs.1c00290. Epub 2021 May 26.
7
The activity and mechanism of vidofludimus as a potent enzyme inhibitor against NDM-1-positive E. coli.
Eur J Med Chem. 2023 Mar 15;250:115225. doi: 10.1016/j.ejmech.2023.115225. Epub 2023 Feb 28.
8
Ebsulfur as a potent scaffold for inhibition and labelling of New Delhi metallo-β-lactamase-1 in vitro and in vivo.
Bioorg Chem. 2019 Mar;84:192-201. doi: 10.1016/j.bioorg.2018.11.035. Epub 2018 Nov 22.
9
A novel potent metal-binding NDM-1 inhibitor was identified by fragment virtual, SPR and NMR screening.
Bioorg Med Chem. 2020 May 1;28(9):115437. doi: 10.1016/j.bmc.2020.115437. Epub 2020 Mar 18.
10
A Cephalosporin Prochelator Inhibits New Delhi Metallo-β-lactamase 1 without Removing Zinc.
ACS Infect Dis. 2020 May 8;6(5):1264-1272. doi: 10.1021/acsinfecdis.0c00083. Epub 2020 Apr 29.

引用本文的文献

1
Approachable Synthetic Methodologies for Second-Generation -Lactamase Inhibitors: A Review.
Pharmaceuticals (Basel). 2024 Aug 23;17(9):1108. doi: 10.3390/ph17091108.
2
Current Strategy for Targeting Metallo-β-Lactamase with Metal-Ion-Binding Inhibitors.
Molecules. 2024 Aug 21;29(16):3944. doi: 10.3390/molecules29163944.
3
New Delhi Metallo-Beta-Lactamase Inhibitors: A Systematic Scoping Review.
J Clin Med. 2024 Jul 18;13(14):4199. doi: 10.3390/jcm13144199.
6
Metals to combat antimicrobial resistance.
Nat Rev Chem. 2023 Mar;7(3):202-224. doi: 10.1038/s41570-023-00463-4. Epub 2023 Feb 8.
7
Towards combating antibiotic resistance by exploring the quantitative structure-activity relationship of NDM-1 inhibitors.
EXCLI J. 2022 Nov 16;21:1331-1351. doi: 10.17179/excli2022-5380. eCollection 2022.
8
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.

本文引用的文献

2
Principles and current strategies targeting metallo-β-lactamase mediated antibacterial resistance.
Med Res Rev. 2020 Sep;40(5):1558-1592. doi: 10.1002/med.21665. Epub 2020 Feb 25.
4
Interplay between β-lactamases and new β-lactamase inhibitors.
Nat Rev Microbiol. 2019 May;17(5):295-306. doi: 10.1038/s41579-019-0159-8.
5
Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design.
ACS Infect Dis. 2019 Jan 11;5(1):9-34. doi: 10.1021/acsinfecdis.8b00247. Epub 2018 Nov 28.
6
Active-Site Conformational Fluctuations Promote the Enzymatic Activity of NDM-1.
Antimicrob Agents Chemother. 2018 Oct 24;62(11). doi: 10.1128/AAC.01579-18. Print 2018 Nov.
7
The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters.
Trends Pharmacol Sci. 2018 Jul;39(7):635-647. doi: 10.1016/j.tips.2018.03.007. Epub 2018 Apr 18.
8
Copper Influences the Antibacterial Outcomes of a β-Lactamase-Activated Prochelator against Drug-Resistant Bacteria.
ACS Infect Dis. 2018 Jun 8;4(6):1019-1029. doi: 10.1021/acsinfecdis.8b00037. Epub 2018 Mar 26.
9
Inhibitors of metallo-β-lactamases.
Curr Opin Microbiol. 2017 Oct;39:96-105. doi: 10.1016/j.mib.2017.10.026. Epub 2017 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验