Suppr超能文献

细菌产生的金属β-内酰胺酶的小分子抑制剂:对其耐药机制的深入了解及其活性的生化分析

Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities.

作者信息

Ayipo Yusuf Oloruntoyin, Chong Chien Fung, Mordi Mohd Nizam

机构信息

Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia.

Department of Chemistry and Industrial Chemistry, Kwara State University P. M. B., 1530, Malete Ilorin Nigeria

出版信息

RSC Med Chem. 2023 Mar 31;14(6):1012-1048. doi: 10.1039/d3md00036b. eCollection 2023 Jun 22.

Abstract

Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of to antibiotics occur through several pathways including the production of metallo-β-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active β-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, and from natural sources, -, and and - from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some β-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.

摘要

抗生素耐药性(AR)仍然是全球医疗保健系统面临的主要威胁之一,这与令人担忧的发病率和死亡率相关。细菌对抗生素的防御机制通过多种途径发生,包括金属β-内酰胺酶(MBL)的产生。特别是碳青霉烯酶,如新德里金属β-内酰胺酶(NDM)、亚胺培南酶(IMP)和维罗纳整合子编码金属β-内酰胺酶(VIM),是AR发病机制中涉及的关键金属β-内酰胺酶,并且是导致最严重AR相关临床状况的原因,但迄今为止尚无获批的抑制剂,这一问题亟待解决。目前,包括最具活性的β-内酰胺类抗生素在内的现有抗生素都容易被臭名昭著的超级细菌产生的酶失活和降解。逐渐地,科学家们致力于遏制这一全球威胁,因此对该主题进行系统概述有助于及时开发有效的治疗方法。在本综述中,概述了MBL菌株的诊断策略以及来自实验报告(2020年至今)的强效小分子抑制剂的生化分析。值得注意的是,来自天然来源的[具体物质1]和[具体物质2],以及来自合成途径的[具体物质3]、[具体物质4]和[具体物质5]显示出最有效的广谱抑制作用,且具有理想的安全性。它们的作用机制包括从MBL活性口袋中螯合金属以及与MBL活性口袋进行多维结合。目前,一些β-内酰胺酶(BL)/MBL抑制剂已进入临床试验阶段。本综述为未来的转化研究提供了一个模型,以发现有效的治疗方法来克服AR带来的挑战。

相似文献

3
Hydroxyhexylitaconic acids as potent IMP-type metallo-β-lactamase inhibitors for controlling carbapenem resistance in .
Microbiol Spectr. 2024 Mar 5;12(3):e0234423. doi: 10.1128/spectrum.02344-23. Epub 2024 Feb 5.
5
In Vitro and In Vivo Development of a β-Lactam-Metallo-β-Lactamase Inhibitor: Targeting Carbapenem-Resistant .
ACS Infect Dis. 2023 Mar 10;9(3):486-496. doi: 10.1021/acsinfecdis.2c00485. Epub 2023 Feb 14.
6
Assay platform for clinically relevant metallo-β-lactamases.
J Med Chem. 2013 Sep 12;56(17):6945-53. doi: 10.1021/jm400769b. Epub 2013 Aug 16.
8
Aspergillomarasmine A inhibits metallo-β-lactamases by selectively sequestering Zn.
J Biol Chem. 2021 Aug;297(2):100918. doi: 10.1016/j.jbc.2021.100918. Epub 2021 Jun 25.
9
Small Molecule Carboxylates Inhibit Metallo-β-lactamases and Resensitize Carbapenem-Resistant Bacteria to Meropenem.
ACS Infect Dis. 2020 Jun 12;6(6):1366-1371. doi: 10.1021/acsinfecdis.9b00459. Epub 2020 Apr 3.
10
Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa.
Infect Chemother. 2015 Jun;47(2):81-97. doi: 10.3947/ic.2015.47.2.81. Epub 2015 Jun 30.

引用本文的文献

1
Carbapenem-resistant raises global alarm for new antibiotic regimens.
iScience. 2024 Nov 12;27(12):111367. doi: 10.1016/j.isci.2024.111367. eCollection 2024 Dec 20.

本文引用的文献

1
Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery.
Trends Microbiol. 2023 Jul;31(7):735-748. doi: 10.1016/j.tim.2023.01.013. Epub 2023 Feb 27.
2
Computational modelling of potential Zn-sensitive non-β-lactam inhibitors of imipenemase-1 (IMP-1).
J Biomol Struct Dyn. 2023 Nov;41(19):10096-10116. doi: 10.1080/07391102.2022.2153168. Epub 2022 Dec 7.
3
Time-resolved β-lactam cleavage by L1 metallo-β-lactamase.
Nat Commun. 2022 Nov 30;13(1):7379. doi: 10.1038/s41467-022-35029-3.
5
Hydroxypyrone derivatives in drug discovery: from chelation therapy to rational design of metalloenzyme inhibitors.
RSC Med Chem. 2022 Jul 29;13(10):1127-1149. doi: 10.1039/d2md00175f. eCollection 2022 Oct 19.
6
Design, Synthesis, and Biological Evaluation of New 1H-Imidazole-2-Carboxylic Acid Derivatives as Metallo-β-Lactamase Inhibitors.
Bioorg Med Chem. 2022 Oct 15;72:116993. doi: 10.1016/j.bmc.2022.116993. Epub 2022 Sep 5.
7
1,2,4-Triazole-3-thione analogues with an arylakyl group at position 4 as metallo-β-lactamase inhibitors.
Bioorg Med Chem. 2022 Oct 15;72:116964. doi: 10.1016/j.bmc.2022.116964. Epub 2022 Aug 11.
9
Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health.
Int J Hyg Environ Health. 2022 Jul;244:114006. doi: 10.1016/j.ijheh.2022.114006. Epub 2022 Jul 13.
10
Biosynthesized δ-BiO Nanoparticles from Flower Extract for Photocatalytic Dye Degradation and Molecular Docking.
ACS Omega. 2022 Jun 8;7(24):20983-20993. doi: 10.1021/acsomega.2c01745. eCollection 2022 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验