Suppr超能文献

基于快速相位法的三维超声图像肾脏分割

Kidney Segmentation in 3-D Ultrasound Images Using a Fast Phase-Based Approach.

作者信息

Torres Helena R, Queiros Sandro, Morais Pedro, Oliveira Bruno, Gomes-Fonseca Joao, Mota Paulo, Lima Estevao, D'Hooge Jan, Fonseca Jaime C, Vilaca Joao L

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2021 May;68(5):1521-1531. doi: 10.1109/TUFFC.2020.3039334. Epub 2021 Apr 26.

Abstract

Renal ultrasound (US) imaging is the primary imaging modality for the assessment of the kidney's condition and is essential for diagnosis, treatment and surgical intervention planning, and follow-up. In this regard, kidney delineation in 3-D US images represents a relevant and challenging task in clinical practice. In this article, a novel framework is proposed to accurately segment the kidney in 3-D US images. The proposed framework can be divided into two stages: 1) initialization of the segmentation method and 2) kidney segmentation. Within the initialization stage, a phase-based feature detection method is used to detect edge points at kidney boundaries, from which the segmentation is automatically initialized. In the segmentation stage, the B-spline explicit active surface framework is adapted to obtain the final kidney contour. Here, a novel hybrid energy functional that combines localized region- and edge-based terms is used during segmentation. For the edge term, a fast-signed phase-based detection approach is applied. The proposed framework was validated in two distinct data sets: 1) 15 3-D challenging poor-quality US images used for experimental development, parameters assessment, and evaluation and 2) 42 3-D US images (both healthy and pathologic kidneys) used to unbiasedly assess its accuracy. Overall, the proposed method achieved a Dice overlap around 81% and an average point-to-surface error of ~2.8 mm. These results demonstrate the potential of the proposed method for clinical usage.

摘要

肾脏超声(US)成像是评估肾脏状况的主要成像方式,对于诊断、治疗、手术干预规划及随访至关重要。在这方面,三维超声图像中的肾脏轮廓描绘在临床实践中是一项相关且具有挑战性的任务。本文提出了一种新颖的框架,用于在三维超声图像中准确分割肾脏。所提出的框架可分为两个阶段:1)分割方法的初始化和2)肾脏分割。在初始化阶段,使用基于相位的特征检测方法来检测肾脏边界处的边缘点,从而自动初始化分割。在分割阶段,采用B样条明确活动表面框架来获得最终的肾脏轮廓。在此,分割过程中使用了一种结合局部区域项和基于边缘项的新型混合能量函数。对于边缘项,应用了一种基于快速符号相位的检测方法。所提出的框架在两个不同的数据集上进行了验证:1)15幅用于实验开发、参数评估和评价的具有挑战性的三维低质量超声图像,以及2)42幅用于无偏评估其准确性的三维超声图像(包括健康和患病的肾脏)。总体而言,所提出的方法实现了约81%的Dice重叠率和约2.8毫米的平均点到表面误差。这些结果证明了所提出方法在临床应用中的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验