Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.
J Sci Food Agric. 2021 Jun;101(8):3193-3201. doi: 10.1002/jsfa.10948. Epub 2020 Dec 11.
The geographical diversification in chemical, biological and physical properties of plant biospheres instigates heterogenicity in the proliferation of important soil microbiome. Controlling functions and structure of plant rhizosphere from a better understanding and prediction of a plant's immediate environment will help assess plant-microbe interplay, improve the productivity of plant ecosystems and improve plant response to adverse soil conditions. Here we characterized functional genes of the microbial community of maize rhizosphere using a culture-independent method.
Our metadata showed microbial genes involved in nitrogen fixation, phosphate solubilization, quorum sensing molecules, trehalose, siderophore production, phenazine biosynthesis protein, daunorubicin resistance, acetoin, 1-aminocyclopropane-1-carboxylate deaminase, 4-hydroxybenzoate, disease control and stress-reducing genes (superoxidase dismutase, catalase, peroxidase, etc.). β-Diversity showed that there is a highly significant difference between most of the genes mined from rhizosphere soil samples and surrounding soils.
The high relative abundance of stress-reducing genes mined from this study showed that the sampling sites harbor not only important plant-beneficial organisms but also a hotspot for developing bio-fertilizers. Nevertheless, since most of these organisms are unculturable, mapping cultivation strategies for their growth could make them readily available as bio-inoculants and possible biotechnological applications in the future. © 2020 Society of Chemical Industry.
植物生物圈在化学、生物和物理性质上的地域多样化激发了重要土壤微生物组的异质性增殖。从更好地理解和预测植物的直接环境出发,控制植物根际的功能和结构将有助于评估植物-微生物相互作用,提高植物生态系统的生产力,并改善植物对不利土壤条件的响应。在这里,我们使用非培养方法对玉米根际微生物群落的功能基因进行了表征。
我们的元数据显示,微生物基因参与固氮、磷酸盐溶解、群体感应分子、海藻糖、铁载体生产、吩嗪生物合成蛋白、柔红霉素抗性、乙酰基、1-氨基环丙烷-1-羧酸脱氨酶、4-羟基苯甲酸、疾病控制和减少应激基因(超氧化物歧化酶、过氧化氢酶、过氧化物酶等)。β多样性表明,从根际土壤样本和周围土壤中挖掘出的大多数基因之间存在高度显著的差异。
从这项研究中挖掘出的减少应激基因的相对丰度较高,表明采样点不仅含有重要的植物有益生物,而且还是开发生物肥料的热点。然而,由于这些生物大多数是不可培养的,因此为它们的生长制定培养策略可以使它们作为生物接种剂随时可用,并在未来具有潜在的生物技术应用。© 2020 化学工业协会。