Suppr超能文献

用于计算机化肺结节分类的LUNGx挑战赛。

LUNGx Challenge for computerized lung nodule classification.

作者信息

Armato Samuel G, Drukker Karen, Li Feng, Hadjiiski Lubomir, Tourassi Georgia D, Engelmann Roger M, Giger Maryellen L, Redmond George, Farahani Keyvan, Kirby Justin S, Clarke Laurence P

机构信息

The University of Chicago , Department of Radiology, 5841 South Maryland Avenue, MC 2026, Chicago, Illinois 60637, United States.

University of Michigan , Department of Radiology, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, United States.

出版信息

J Med Imaging (Bellingham). 2016 Oct;3(4):044506. doi: 10.1117/1.JMI.3.4.044506. Epub 2016 Dec 19.

Abstract

The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants' computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. Ten groups applied their own methods to 73 lung nodules (37 benign and 36 malignant) that were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists' AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. The continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.

摘要

这项工作的目的是描述LUNGx挑战赛,该挑战赛旨在对诊断性计算机断层扫描(CT)图像上的肺结节进行计算机化分类,判断其为良性或恶性,并报告参与者的计算机化方法以及六名参与观察者研究的放射科医生在相同数据集上执行相同挑战任务的表现。该挑战赛提供了校准和测试扫描集,建立了性能评估流程,并创建了病例传播和结果提交的基础设施。十组研究人员将他们自己的方法应用于73个肺结节(37个良性和36个恶性),这些肺结节的选择旨在使两个队列之间的大小大致匹配。这些方法的受试者工作特征曲线下面积(AUC)值在0.50至0.68之间;只有三种方法在统计学上比随机猜测表现更好。放射科医生的AUC值在0.70至0.85之间;三名放射科医生在统计学上比表现最佳的计算机方法表现更好。LUNGx挑战赛比较了计算机化方法在CT扫描上区分良性和恶性肺结节任务中的表现,并将其置于放射科医生在同一任务中的表现背景下。挑战赛病例的持续公开可用性将为医学影像研究界提供宝贵资源。

相似文献

1
LUNGx Challenge for computerized lung nodule classification.用于计算机化肺结节分类的LUNGx挑战赛。
J Med Imaging (Bellingham). 2016 Oct;3(4):044506. doi: 10.1117/1.JMI.3.4.044506. Epub 2016 Dec 19.

引用本文的文献

本文引用的文献

1
Radiological Image Traits Predictive of Cancer Status in Pulmonary Nodules.预测肺结节癌症状态的放射学图像特征
Clin Cancer Res. 2017 Mar 15;23(6):1442-1449. doi: 10.1158/1078-0432.CCR-15-3102. Epub 2016 Sep 23.
2
Predicting Malignant Nodules from Screening CT Scans.通过筛查CT扫描预测恶性结节
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.
3
Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.利用定量肺实质特征改进肺结节分类
J Med Imaging (Bellingham). 2015 Oct;2(4):041004. doi: 10.1117/1.JMI.2.4.041004. Epub 2015 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验