Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.
Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA.
Sci Adv. 2017 Apr 26;3(4):e1602614. doi: 10.1126/sciadv.1602614. eCollection 2017 Apr.
We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.
我们提出了一种稀疏回归方法,通过在空间域中的时间序列测量来发现给定系统的控制偏微分方程。该回归框架依赖于稀疏促进技术,以选择最准确地表示数据的非线性和偏导数项,从而避免了通过所有可能的候选模型进行组合式的大量搜索。该方法通过 Pareto 分析选择简约模型来平衡模型复杂度和回归准确性。时间序列测量可以在欧拉框架中进行,其中传感器在空间上固定,或者在拉格朗日框架中进行,其中传感器随动力学移动。该方法具有计算效率高、鲁棒性强的特点,并已证明可用于多种经典问题,涵盖了多个科学领域,包括纳维-斯托克斯方程、量子谐振子和扩散方程。此外,该方法还能够通过使用具有不同初始数据的多个时间序列来区分潜在的非唯一动力项。因此,对于行波,该方法可以区分线性波动方程和 Korteweg-de Vries 方程等。该方法为在参数化时空系统中发现控制方程和物理定律提供了一种很有前途的新技术,在这些系统中,从第一性原理推导是难以处理的。