Suppr超能文献

基于物理信息的卷积递归神经网络在动力系统源识别和预测中的应用。

Physics-incorporated convolutional recurrent neural networks for source identification and forecasting of dynamical systems.

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Neural Netw. 2021 Dec;144:359-371. doi: 10.1016/j.neunet.2021.08.033. Epub 2021 Sep 7.

Abstract

Spatio-temporal dynamics of physical processes are generally modeled using partial differential equations (PDEs). Though the core dynamics follows some principles of physics, real-world physical processes are often driven by unknown external sources. In such cases, developing a purely analytical model becomes very difficult and data-driven modeling can be of assistance. In this paper, we present a hybrid framework combining physics-based numerical models with deep learning for source identification and forecasting of spatio-temporal dynamical systems with unobservable time-varying external sources. We formulate our model PhICNet as a convolutional recurrent neural network (RNN) which is end-to-end trainable for spatio-temporal evolution prediction of dynamical systems and learns the source behavior as an internal state of the RNN. Experimental results show that the proposed model can forecast the dynamics for a relatively long time and identify the sources as well.

摘要

物理过程的时空动态通常使用偏微分方程 (PDE) 进行建模。尽管核心动态遵循一些物理原理,但实际的物理过程通常是由未知的外部源驱动的。在这种情况下,开发纯粹的分析模型变得非常困难,而数据驱动的建模可能会有所帮助。在本文中,我们提出了一个混合框架,将基于物理的数值模型与深度学习相结合,用于识别和预测具有不可观测时变外部源的时空动力系统。我们将模型 PhICNet 表示为一个卷积递归神经网络 (RNN),它可以端到端地训练用于动力系统的时空演化预测,并将源行为学习为 RNN 的内部状态。实验结果表明,所提出的模型可以长时间预测动力学并识别源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验