School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
Neural Netw. 2021 Dec;144:359-371. doi: 10.1016/j.neunet.2021.08.033. Epub 2021 Sep 7.
Spatio-temporal dynamics of physical processes are generally modeled using partial differential equations (PDEs). Though the core dynamics follows some principles of physics, real-world physical processes are often driven by unknown external sources. In such cases, developing a purely analytical model becomes very difficult and data-driven modeling can be of assistance. In this paper, we present a hybrid framework combining physics-based numerical models with deep learning for source identification and forecasting of spatio-temporal dynamical systems with unobservable time-varying external sources. We formulate our model PhICNet as a convolutional recurrent neural network (RNN) which is end-to-end trainable for spatio-temporal evolution prediction of dynamical systems and learns the source behavior as an internal state of the RNN. Experimental results show that the proposed model can forecast the dynamics for a relatively long time and identify the sources as well.
物理过程的时空动态通常使用偏微分方程 (PDE) 进行建模。尽管核心动态遵循一些物理原理,但实际的物理过程通常是由未知的外部源驱动的。在这种情况下,开发纯粹的分析模型变得非常困难,而数据驱动的建模可能会有所帮助。在本文中,我们提出了一个混合框架,将基于物理的数值模型与深度学习相结合,用于识别和预测具有不可观测时变外部源的时空动力系统。我们将模型 PhICNet 表示为一个卷积递归神经网络 (RNN),它可以端到端地训练用于动力系统的时空演化预测,并将源行为学习为 RNN 的内部状态。实验结果表明,所提出的模型可以长时间预测动力学并识别源。