Suppr超能文献

历史数据在基因组选择中的高效利用:以小麦抗秆锈病为例的研究

Efficient Use of Historical Data for Genomic Selection: A Case Study of Stem Rust Resistance in Wheat.

作者信息

Rutkoski J, Singh R P, Huerta-Espino J, Bhavani S, Poland J, Jannink J L, Sorrells M E

机构信息

International Programs in the College of Agriculture and Life Sciences, and Plant Breeding and Genetics Section in the School of Integrative Plant Science, 240 Emerson Hall, Cornell Univ., Ithaca, NY, 14853, USA.

International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, El Batan, Mexico.

出版信息

Plant Genome. 2015 Mar;8(1):eplantgenome2014.09.0046. doi: 10.3835/plantgenome2014.09.0046.

Abstract

Genomic selection (GS) is a methodology that can improve crop breeding efficiency. To implement GS, a training population (TP) with phenotypic and genotypic data is required to train a statistical model used to predict genotyped selection candidates (SCs). A key factor impacting prediction accuracy is the relationship between the TP and the SCs. This study used empirical data for quantitative adult plant resistance to stem rust of wheat (Triticum aestivum L.) to investigate the utility of a historical TP (TP ) compared with a population-specific TP (TP ), the potential for TP optimization, and the utility of TP data when close relative data is available for training. We found that, depending on the population size, a TP was 1.5 to 4.4 times more accurate than a TP , and TP optimization based on the mean of the generalized coefficient of determination or prediction error variance enabled the selection of subsets that led to significantly higher accuracy than randomly selected subsets. Retaining historical data when data on close relatives were available lead to a 11.9% increase in accuracy, at best, and a 12% decrease in accuracy, at worst, depending on the heritability. We conclude that historical data could be used successfully to initiate a GS program, especially if the dataset is very large and of high heritability. Training population optimization would be useful for the identification of TP subsets to phenotype additional traits. However, after model updating, discarding historical data may be warranted. More studies are needed to determine if these observations represent general trends.

摘要

基因组选择(GS)是一种可以提高作物育种效率的方法。要实施GS,需要一个具有表型和基因型数据的训练群体(TP)来训练用于预测基因型选择候选者(SC)的统计模型。影响预测准确性的一个关键因素是TP与SC之间的关系。本研究使用小麦(Triticum aestivum L.)成株期对秆锈病的定量抗性的实证数据,来研究与特定群体TP(TP )相比历史TP(TP )的效用、TP优化的潜力以及当有近亲数据可用于训练时TP数据的效用。我们发现,根据群体大小,TP的准确性比TP高1.5至4.4倍,并且基于广义决定系数或预测误差方差的均值进行TP优化能够选择出比随机选择的子集准确性显著更高的子集。当有近亲数据时保留历史数据,根据遗传力的不同,准确性最高可提高11.9%,最差则会降低12%。我们得出结论,历史数据可以成功用于启动GS计划,特别是如果数据集非常大且遗传力高的情况下。训练群体优化对于识别TP子集以对其他性状进行表型分析将是有用的。然而,在模型更新后,可能有必要舍弃历史数据。需要更多研究来确定这些观察结果是否代表普遍趋势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验