National Laboratory of Biomacromolecules, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China.
College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31166-31176. doi: 10.1073/pnas.2006276117. Epub 2020 Nov 23.
Multiple resistance and pH adaptation (Mrp) complexes are sophisticated cation/proton exchangers found in a vast variety of alkaliphilic and/or halophilic microorganisms, and are critical for their survival in highly challenging environments. This family of antiporters is likely to represent the ancestor of cation pumps found in many redox-driven transporter complexes, including the complex I of the respiratory chain. Here, we present the three-dimensional structure of the Mrp complex from a sp. strain solved at 3.0-Å resolution using the single-particle cryoelectron microscopy method. Our structure-based mutagenesis and functional analyses suggest that the substrate translocation pathways for the driving substance protons and the substrate sodium ions are separated in two modules and that symmetry-restrained conformational change underlies the functional cycle of the transporter. Our findings shed light on mechanisms of redox-driven primary active transporters, and explain how driving substances of different electric charges may drive similar transport processes.
多重耐药和 pH 适应 (Mrp) 复合体是在各种嗜碱和/或嗜盐微生物中发现的复杂阳离子/质子交换体,对于它们在极具挑战性的环境中的生存至关重要。这种转运蛋白家族可能代表了许多氧化还原驱动转运蛋白复合体中阳离子泵的祖先,包括呼吸链中的复合体 I。在这里,我们使用单颗粒冷冻电子显微镜方法在 3.0-Å 分辨率下解决了 sp. 菌株的 Mrp 复合体的三维结构。我们的基于结构的诱变和功能分析表明,驱动物质质子和底物钠离子的底物转运途径在两个模块中分开,并且对称约束的构象变化是转运体功能循环的基础。我们的发现揭示了氧化还原驱动主要主动转运蛋白的机制,并解释了不同电荷的驱动物质如何可能驱动类似的运输过程。