Suppr超能文献

海马体和背侧纹状体学习和决策的通用模型。

A general model of hippocampal and dorsal striatal learning and decision making.

机构信息

Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London W1T 4JG, United Kingdom.

Institute of Cognitive Neuroscience, University College London, London WC1N 3AZ, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31427-31437. doi: 10.1073/pnas.2007981117. Epub 2020 Nov 23.

Abstract

Humans and other animals use multiple strategies for making decisions. Reinforcement-learning theory distinguishes between stimulus-response (model-free; MF) learning and deliberative (model-based; MB) planning. The spatial-navigation literature presents a parallel dichotomy between navigation strategies. In "response learning," associated with the dorsolateral striatum (DLS), decisions are anchored to an egocentric reference frame. In "place learning," associated with the hippocampus, decisions are anchored to an allocentric reference frame. Emerging evidence suggests that the contribution of hippocampus to place learning may also underlie its contribution to MB learning by representing relational structure in a cognitive map. Here, we introduce a computational model in which hippocampus subserves place and MB learning by learning a "successor representation" of relational structure between states; DLS implements model-free response learning by learning associations between actions and egocentric representations of landmarks; and action values from either system are weighted by the reliability of its predictions. We show that this model reproduces a range of seemingly disparate behavioral findings in spatial and nonspatial decision tasks and explains the effects of lesions to DLS and hippocampus on these tasks. Furthermore, modeling place cells as driven by boundaries explains the observation that, unlike navigation guided by landmarks, navigation guided by boundaries is robust to "blocking" by prior state-reward associations due to learned associations between place cells. Our model, originally shaped by detailed constraints in the spatial literature, successfully characterizes the hippocampal-striatal system as a general system for decision making via adaptive combination of stimulus-response learning and the use of a cognitive map.

摘要

人类和其他动物使用多种策略来做出决策。强化学习理论区分了刺激-反应(无模型;MF)学习和深思熟虑(基于模型;MB)规划。空间导航文献提出了一种平行的二分法,用于区分导航策略。在“反应学习”中,与背外侧纹状体(DLS)相关联,决策以自我为中心的参考系为锚定点。在“位置学习”中,与海马体相关联,决策以客观参考系为锚定点。新出现的证据表明,海马体对位置学习的贡献也可能是通过在认知地图中表示关系结构来为 MB 学习做出贡献。在这里,我们引入了一个计算模型,其中海马体通过学习状态之间关系结构的“后继表示”来实现位置和 MB 学习;DLS 通过学习动作和地标自我中心表示之间的关联来实现无模型反应学习;来自任一系统的动作值都由其预测的可靠性加权。我们表明,该模型再现了一系列看似不同的空间和非空间决策任务中的行为发现,并解释了 DLS 和海马体损伤对这些任务的影响。此外,将位置细胞建模为受边界驱动,可以解释这样一个观察结果,即与由地标引导的导航不同,由边界引导的导航由于位置细胞之间的学习关联而对先前状态-奖励关联的“阻断”具有鲁棒性。我们的模型最初是根据空间文献中的详细约束形成的,成功地将海马-纹状体系统描述为通过刺激-反应学习的自适应组合和使用认知地图来进行决策的通用系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29af/7733794/54af56b31317/pnas.2007981117fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验