Suppr超能文献

通过海马体在适应性现实世界决策中考虑多尺度处理。

Accounting for multiscale processing in adaptive real-world decision-making via the hippocampus.

作者信息

Mehrotra Dhruv, Dubé Laurette

机构信息

Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada.

Montréal Neurological Institute, McGill University, Montréal, QC, Canada.

出版信息

Front Neurosci. 2023 Sep 5;17:1200842. doi: 10.3389/fnins.2023.1200842. eCollection 2023.

Abstract

For adaptive real-time behavior in real-world contexts, the brain needs to allow past information over multiple timescales to influence current processing for making choices that create the best outcome as a person goes about making choices in their everyday life. The neuroeconomics literature on value-based decision-making has formalized such choice through reinforcement learning models for two extreme strategies. These strategies are (MF), which is an automatic, stimulus-response type of action, and (MB), which bases choice on cognitive representations of the world and causal inference on environment-behavior structure. The emphasis of examining the neural substrates of value-based decision making has been on the striatum and prefrontal regions, especially with regards to the decision-making. Yet, such a dichotomy does not embrace all the dynamic complexity involved. In addition, despite robust research on the role of the hippocampus in memory and spatial learning, its contribution to value-based decision making is just starting to be explored. This paper aims to better appreciate the role of the hippocampus in decision-making and advance the successor representation (SR) as a candidate mechanism for encoding state representations in the hippocampus, separate from reward representations. To this end, we review research that relates hippocampal sequences to SR models showing that the implementation of such sequences in reinforcement learning agents improves their performance. This also enables the agents to perform multiscale temporal processing in a biologically plausible manner. Altogether, we articulate a framework to advance current striatal and prefrontal-focused decision making to better account for multiscale mechanisms underlying various real-world time-related concepts such as the self that cumulates over a person's life course.

摘要

对于现实世界背景下的适应性实时行为,大脑需要让多个时间尺度上的过去信息影响当前的处理过程,以便在人们日常生活中做出选择时创造出最佳结果。关于基于价值的决策的神经经济学文献已经通过强化学习模型将这种选择形式化,用于两种极端策略。这些策略是(MF),这是一种自动的、刺激-反应类型的行动,以及(MB),它基于对世界的认知表征和对环境-行为结构的因果推理来做出选择。研究基于价值的决策的神经基础的重点一直放在纹状体和前额叶区域,特别是关于决策方面。然而,这种二分法并没有涵盖所有涉及的动态复杂性。此外,尽管对海马体在记忆和空间学习中的作用进行了大量研究,但其对基于价值的决策的贡献才刚刚开始被探索。本文旨在更好地理解海马体在决策中的作用,并推进后继表征(SR)作为一种在海马体中编码状态表征的候选机制,与奖励表征分开。为此,我们回顾了将海马体序列与SR模型相关联的研究,这些研究表明在强化学习智能体中实现这样的序列可以提高它们的性能。这也使智能体能够以生物学上合理的方式进行多尺度时间处理。总之,我们阐述了一个框架,以推进当前以纹状体和前额叶为重点的决策,以便更好地解释各种与现实世界时间相关概念(如在一个人的生命历程中积累的自我)背后的多尺度机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1bc/10508350/e88f5d280926/fnins-17-1200842-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验