Suppr超能文献

儿科个性化营养方法:叙述性综述。

Personalized nutrition approach in pediatrics: a narrative review.

机构信息

Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy.

Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy.

出版信息

Pediatr Res. 2021 Jan;89(2):384-388. doi: 10.1038/s41390-020-01291-8. Epub 2020 Nov 23.

Abstract

Dietary habits represent the main determinant of health. Although extensive research has been conducted to modify unhealthy dietary behaviors across the lifespan, obesity and obesity-associated comorbidities are increasingly observed worldwide. Individually tailored interventions are nowadays considered a promising frontier for nutritional research. In this narrative review, the technologies of importance in a pediatric clinical setting are discussed. The first determinant of the dietary balance is represented by energy intakes matching individual needs. Most emerging studies highlight the opportunity to reconsider the widely used prediction equations of resting energy expenditure. Artificial Neural Network approaches may help to disentangle the role of single contributors to energy expenditure. Artificial intelligence is also useful in the prediction of the glycemic response, based on the individual microbiome. Other factors further concurring to define individually tailored nutritional needs are metabolomics and nutrigenomic. Since most available data come from studies in adult groups, new efforts should now be addressed to integrate all these aspects to develop comprehensive and-above all-effective interventions for children. IMPACT: Personalized dietary advice, specific to individuals, should be more effective in the prevention of chronic diseases than general recommendations about diet. Artificial Neural Networks algorithms are technologies of importance in a pediatric setting that may help practitioners to provide personalized nutrition. Other approaches to personalized nutrition, while promising in adults and for basic research, are still far from practical application in pediatrics.

摘要

饮食习惯是健康的主要决定因素。尽管已经进行了广泛的研究来改变整个生命周期中的不健康饮食行为,但肥胖和肥胖相关的合并症在全球范围内越来越常见。个性化干预措施现在被认为是营养研究的一个有前途的领域。在这篇叙述性评论中,讨论了儿科临床环境中重要的技术。饮食平衡的第一个决定因素是能量摄入与个体需求相匹配。大多数新出现的研究强调了重新考虑广泛使用的静息能量消耗预测方程的机会。人工神经网络方法可能有助于理清对能量消耗有贡献的单一因素的作用。人工智能在预测基于个体微生物组的血糖反应方面也很有用。其他因素也进一步有助于确定个性化的营养需求,包括代谢组学和营养基因组学。由于大多数可用数据来自成年人组的研究,现在应该做出新的努力,整合所有这些方面,为儿童制定全面有效的干预措施。

影响

与关于饮食的一般建议相比,针对个体的个性化饮食建议在预防慢性病方面应该更有效。人工神经网络算法是儿科环境中的重要技术,可帮助从业者提供个性化营养。虽然其他个性化营养方法在成年人和基础研究中很有前景,但在儿科领域的实际应用仍遥遥无期。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验