Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA.
Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.
Small. 2020 Dec;16(50):e2005439. doi: 10.1002/smll.202005439. Epub 2020 Nov 23.
Control of the metal-insulator phase transition is vital for emerging neuromorphic and memristive technologies. The ability to alter the electrically driven transition between volatile and non-volatile states is particularly important for quantum-materials-based emulation of neurons and synapses. The major challenge of this implementation is to understand and control the nanoscale mechanisms behind these two fundamental switching modalities. Here, in situ X-ray nanoimaging is used to follow the evolution of the nanostructure and disorder in the archetypal Mott insulator VO during an electrically driven transition. Our findings demonstrate selective and reversible stabilization of either the insulating or metallic phases achieved by manipulating the defect concentration. This mechanism enables us to alter the local switching response between volatile and persistent regimes and demonstrates a new possibility for nanoscale control of the resistive switching in Mott materials.
控制金属-绝缘体相变对于新兴的神经形态和忆阻器技术至关重要。能够改变电驱动的易失性和非易失性状态之间的转变对于基于量子材料的神经元和突触模拟尤为重要。这种实现的主要挑战是理解和控制这两种基本开关模式背后的纳米级机制。在这里,我们使用原位 X 射线纳米成像来跟踪原型莫特绝缘体 VO 中纳米结构和无序的演变,这一过程发生在电驱动的转变过程中。我们的研究结果表明,通过操纵缺陷浓度,可以选择性地和可逆地稳定绝缘相或金属相。这种机制使我们能够改变易失性和持久性之间的局部开关响应,并为莫特材料中电阻开关的纳米级控制提供了一种新的可能性。