Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973.
Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2105895118.
Vanadium dioxide (VO), which exhibits a near-room-temperature insulator-metal transition, has great potential in applications of neuromorphic computing devices. Although its volatile switching property, which could emulate neuron spiking, has been studied widely, nanoscale studies of the structural stochasticity across the phase transition are still lacking. In this study, using in situ transmission electron microscopy and ex situ resistive switching measurement, we successfully characterized the structural phase transition between monoclinic and rutile VO at local areas in planar VO/TiO device configuration under external biasing. After each resistive switching, different VO monoclinic crystal orientations are observed, forming different equilibrium states. We have evaluated a statistical cycle-to-cycle variation, demonstrated a stochastic nature of the volatile resistive switching, and presented an approach to study in-plane structural anisotropy. Our microscopic studies move a big step forward toward understanding the volatile switching mechanisms and the related applications of VO as the key material of neuromorphic computing.
二氧化钒(VO)具有近室温的绝缘-金属相变,在神经形态计算设备的应用中有很大的潜力。虽然其易挥发的开关特性可以模拟神经元尖峰,但在纳米尺度上对相变过程中的结构随机性的研究仍然缺乏。在这项研究中,我们使用原位透射电子显微镜和非原位电阻开关测量,成功地在外部偏压下,在平面 VO/TiO 器件结构中,对局部区域的单斜相和金红石相 VO 之间的结构相变进行了表征。在每次电阻开关后,观察到不同的 VO 单斜晶体取向,形成不同的平衡状态。我们评估了一个统计的循环到循环的变化,证明了易挥发的电阻开关的随机性,并提出了一种研究面内结构各向异性的方法。我们的微观研究朝着理解易挥发开关机制以及 VO 作为神经形态计算的关键材料的相关应用迈进了一大步。