Suppr超能文献

通过扫描X射线衍射显微镜成像的结构形态的深度学习

Deep learning of structural morphology imaged by scanning X-ray diffraction microscopy.

作者信息

Luo Aileen, Zhou Tao, Holt Martin V, Singer Andrej, Cherukara Mathew J

机构信息

Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA.

Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, 60439, USA.

出版信息

Sci Rep. 2025 Jul 1;15(1):21736. doi: 10.1038/s41598-025-97183-0.

Abstract

Scanning X-ray nanodiffraction microscopy is a powerful technique for spatially resolving nanoscale structural morphologies by diffraction contrast. One of the critical challenges in experimental nanodiffraction data analysis is posed by the convergence angle of nanoscale focusing optics which creates simultaneous dependency of the far-field scattering data on three independent components of the local strain tensor-corresponding to dilation and two potential rigid body rotations of the unit cell. All three components are in principle resolvable through a spatially mapped sample tilt series; however, traditional data analysis is computationally expensive and prone to artifacts. In this study, we implement NanobeamNN, a convolutional neural network specifically tailored to the analysis of scanning probe X-ray microscopy data. NanobeamNN learns lattice strain and rotation angles from simulated diffraction of a focused X-ray nanobeam by an epitaxial thin film and can directly make reasonable predictions on experimental data without the need for additional fine-tuning. We demonstrate that this approach represents a significant advancement in computational speed over conventional methods, as well as a potential improvement in accuracy over the current standard.

摘要

扫描X射线纳米衍射显微镜是一种通过衍射对比度在空间上解析纳米级结构形态的强大技术。实验纳米衍射数据分析中的一个关键挑战是由纳米级聚焦光学器件的会聚角引起的,该会聚角导致远场散射数据同时依赖于局部应变张量的三个独立分量,这三个分量分别对应于晶格膨胀和晶胞的两个潜在刚体旋转。原则上,所有这三个分量都可以通过空间映射的样品倾斜系列来解析;然而,传统的数据分析计算成本高昂且容易产生伪像。在本研究中,我们实现了NanobeamNN,这是一种专门为扫描探针X射线显微镜数据分析量身定制的卷积神经网络。NanobeamNN从外延薄膜对聚焦X射线纳米束的模拟衍射中学习晶格应变和旋转角度,并且无需额外的微调就能直接对实验数据做出合理预测。我们证明,这种方法在计算速度上比传统方法有显著提高,在精度上也可能比当前标准有所改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dff/12216774/ef02a7a4088d/41598_2025_97183_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验