Suppr超能文献

基于多组学的个性化超分割立体定向自适应放疗(PULSAR)中的疗效预测

Multiomics-Based Outcome Prediction in Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy (PULSAR).

作者信息

Zhang Haozhao, Dohopolski Michael, Stojadinovic Strahinja, Schmitt Luiza Giuliani, Anand Soummitra, Kim Heejung, Pompos Arnold, Godley Andrew, Jiang Steve, Dan Tu, Wardak Zabi, Timmerman Robert, Peng Hao

机构信息

Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Medical Artificial Intelligence and Automation Laboratory, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Cancers (Basel). 2024 Oct 9;16(19):3425. doi: 10.3390/cancers16193425.

Abstract

: This retrospective study aims to develop a multiomics approach that integrates radiomics, dosiomics, and delta features to predict treatment responses in brain metastasis (BM) patients undergoing PULSAR. : A retrospective study encompassing 39 BM patients with 69 lesions treated with PULSAR was undertaken. Radiomics, dosiomics, and delta features were extracted from both pre-treatment and intra-treatment MRI scans alongside dose distributions. Six individual models, alongside an ensemble feature selection (EFS) model, were evaluated. The classification task focused on distinguishing between two lesion groups based on whether they exhibited a volume reduction of more than 20% at follow-up. Performance metrics, including sensitivity, specificity, accuracy, precision, F1 score, and the area under the receiver operating characteristic (ROC) curve (AUC), were assessed. : The EFS model integrated the features from pre-treatment radiomics, pre-treatment dosiomics, intra-treatment radiomics, and delta radiomics. It outperformed six individual models, achieving an AUC of 0.979, accuracy of 0.917, and F1 score of 0.821. Among the top nine features of the EFS model, six features came from post-wavelet transformation and three from original images. : The study demonstrated the feasibility of employing a data-driven multiomics approach to predict treatment outcomes in BM patients receiving PULSAR treatment. Integrating multiomics with intra-treatment decision support in PULSAR shows promise for optimizing patient management and reducing the risks of under- or over-treatment.

摘要

本回顾性研究旨在开发一种多组学方法,该方法整合放射组学、剂量组学和增量特征,以预测接受PULSAR治疗的脑转移(BM)患者的治疗反应。

开展了一项回顾性研究,纳入了39例接受PULSAR治疗的BM患者,共69个病灶。从治疗前和治疗期间的MRI扫描以及剂量分布中提取放射组学、剂量组学和增量特征。评估了六个单独模型以及一个集成特征选择(EFS)模型。分类任务重点是根据随访时病灶体积缩小是否超过20%来区分两个病灶组。评估了包括灵敏度、特异性、准确性、精确性、F1分数以及受试者操作特征(ROC)曲线下面积(AUC)在内的性能指标。

EFS模型整合了治疗前放射组学、治疗前剂量组学、治疗期间放射组学和增量放射组学的特征。它优于六个单独模型,AUC为0.979,准确性为0.917,F1分数为0.821。在EFS模型的前九个特征中,六个特征来自小波变换后,三个来自原始图像。

该研究证明了采用数据驱动的多组学方法预测接受PULSAR治疗的BM患者治疗结果的可行性。将多组学与PULSAR治疗期间的决策支持相结合,有望优化患者管理并降低治疗不足或过度治疗的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8d4/11475788/68967e66c78f/cancers-16-03425-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验