Suppr超能文献

基于F-FDG PET/CT的影像组学模型对临床腋窝淋巴结阴性乳腺癌隐匿性腋窝淋巴结转移的预测价值

Predictive Value of F-FDG PET/CT-Based Radiomics Model for Occult Axillary Lymph Node Metastasis in Clinically Node-Negative Breast Cancer.

作者信息

Chen Kun, Yin Guotao, Xu Wengui

机构信息

Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi Distinct, Tianjin 300060, China.

National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin 300060, China.

出版信息

Diagnostics (Basel). 2022 Apr 15;12(4):997. doi: 10.3390/diagnostics12040997.

Abstract

To develop and validate a radiomics model based on F-FDG PET/CT images to preoperatively predict occult axillary lymph node (ALN) metastases in patients with invasive ductal breast cancer (IDC) with clinically node-negative (cN0); Methods: A total of 180 patients (mean age, 55 years; range, 31-82 years) with pathologically proven IDC and a preoperative F-FDG PET/CT scan from January 2013 to January 2021 were included in this retrospective study. According to the intraoperative pathological results of ALN, we divided patients into the true-negative group and ALN occult metastasis group. Radiomics features were extracted from PET/CT images using Pyradiomics implemented in Python, -tests, and LASSO were used to screen the feature, and the random forest (RF), support vector machine (SVM), stochastic gradient descent (SGD), and k-nearest neighbor (KNN) were used to build the prediction models. The best-performing model was further tested by the permutation test; Results: Among the four models, RF had the best prediction results, the AUC range of RF was 0.661-0.929 (mean AUC, 0.817), and the accuracy range was 65.3-93.9% (mean accuracy, 81.2%). The -values of the permutation tests for the RF model with maximum and minimum accuracy were less than 0.01; Conclusions: The developed RF model was able to predict occult ALN metastases in IDC patients based on preoperative F-FDG PET/CT radiomic features.

摘要

建立并验证基于F-FDG PET/CT图像的放射组学模型,以术前预测临床淋巴结阴性(cN0)的浸润性导管癌(IDC)患者的腋窝隐匿性淋巴结(ALN)转移;方法:本回顾性研究纳入了2013年1月至2021年1月期间180例经病理证实为IDC且术前行F-FDG PET/CT扫描的患者(平均年龄55岁;范围31-82岁)。根据ALN的术中病理结果,将患者分为真阴性组和ALN隐匿转移组。使用Python中实现的Pyradiomics从PET/CT图像中提取放射组学特征,采用t检验和LASSO筛选特征,并使用随机森林(RF)、支持向量机(SVM)、随机梯度下降(SGD)和k近邻(KNN)建立预测模型。通过排列检验进一步测试性能最佳的模型;结果:在四个模型中,RF的预测结果最佳,RF的AUC范围为0.661-0.929(平均AUC,0.817),准确率范围为65.3-93.9%(平均准确率,81.2%)。准确率最高和最低的RF模型的排列检验P值均小于0.01;结论:所建立的RF模型能够基于术前F-FDG PET/CT放射组学特征预测IDC患者的隐匿性ALN转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验