Department of Environmental Science, Aarhus University, Roskilde, Denmark
Aarhus Institute of Advanced Studies, Aarhus, Denmark.
mBio. 2020 Nov 24;11(6):e02641-20. doi: 10.1128/mBio.02641-20.
Conserving additional energy from sunlight through bacteriochlorophyll (BChl)-based reaction center or proton-pumping rhodopsin is a highly successful life strategy in environmental bacteria. BChl and rhodopsin-based systems display contrasting characteristics in the size of coding operon, cost of biosynthesis, ease of expression control, and efficiency of energy production. This raises an intriguing question of whether a single bacterium has evolved the ability to perform these two types of phototrophy complementarily according to energy needs and environmental conditions. Here, we report four sp. strains () of monophyletic origin isolated from a high Arctic glacier in northeast Greenland (81.566° N, 16.363° W) that are at different evolutionary stages concerning phototrophy. Their >99.8% identical genomes contain footprints of horizontal operon transfer (HOT) of the complete gene clusters encoding BChl- and xanthorhodopsin (XR)-based dual phototrophy. Two strains possess only a complete XR operon, while the other two strains have both a photosynthesis gene cluster and an XR operon in their genomes. All XR operons are heavily surrounded by mobile genetic elements and are located close to a tRNA gene, strongly signaling that a HOT event of the XR operon has occurred recently. Mining public genome databases and our high Arctic glacial and soil metagenomes revealed that phylogenetically diverse bacteria have the metabolic potential of performing BChl- and rhodopsin-based dual phototrophy. Our data provide new insights on how bacteria cope with the harsh and energy-deficient environment in surface glacier, possibly by maximizing the capability of exploiting solar energy. Over the course of evolution for billions of years, bacteria that are capable of light-driven energy production have occupied every corner of surface Earth where sunlight can reach. Only two general biological systems have evolved in bacteria to be capable of net energy conservation via light harvesting: one is based on the pigment of (bacterio-)chlorophyll and the other is based on proton-pumping rhodopsin. There is emerging genomic evidence that these two rather different systems can coexist in a single bacterium to take advantage of their contrasting characteristics in the number of genes involved, biosynthesis cost, ease of expression control, and efficiency of energy production and thus enhance the capability of exploiting solar energy. Our data provide the first clear-cut evidence that such dual phototrophy potentially exists in glacial bacteria. Further public genome mining suggests this understudied dual phototrophic mechanism is possibly more common than our data alone suggested.
通过细菌叶绿素 (BChl) 基反应中心或质子泵视紫红质从太阳光中节约额外的能量是环境细菌中一种非常成功的生存策略。BChl 和视紫红质基系统在编码操纵子的大小、生物合成的成本、表达控制的容易程度和能量产生的效率方面表现出不同的特点。这就提出了一个有趣的问题,即单个细菌是否已经进化出根据能量需求和环境条件互补地执行这两种光合作用的能力。在这里,我们报告了从格陵兰东北部一个高北极冰川(81.566°N,16.363°W)中分离出的四个单系起源的 sp. 菌株(),它们在光合作用方面处于不同的进化阶段。它们 >99.8%相同的基因组包含水平操纵子转移 (HOT) 的痕迹,该转移涉及编码 BChl 和 xanthorhodopsin (XR) 双光合作用的完整基因簇。两个菌株只含有一个完整的 XR 操纵子,而另外两个菌株的基因组中既有光合作用基因簇又有 XR 操纵子。所有的 XR 操纵子都被移动遗传元件严重包围,并且位于 tRNA 基因附近,这强烈表明 XR 操纵子的 HOT 事件最近发生了。挖掘公共基因组数据库和我们的高北极冰川和土壤宏基因组揭示了具有不同系统发育的细菌具有执行 BChl 和视紫红质基双光合作用的代谢潜力。我们的数据提供了关于细菌如何应对表面冰川恶劣和能量匮乏环境的新见解,这可能是通过最大限度地提高利用太阳能的能力来实现的。在数十亿年的进化过程中,能够进行光驱动能量产生的细菌已经占据了阳光能够到达的地球表面的每一个角落。只有两种一般的生物系统在细菌中进化为能够通过光捕获来进行净能量保存:一种基于(细菌)叶绿素的色素,另一种基于质子泵视紫红质。越来越多的基因组证据表明,这两种截然不同的系统可以在单个细菌中共存,以利用它们在涉及的基因数量、生物合成成本、表达控制的容易程度以及能量产生效率等方面的差异特征,从而提高利用太阳能的能力。我们的数据提供了第一个明确的证据,表明这种双光合作用可能存在于冰川细菌中。进一步的公共基因组挖掘表明,这种研究不足的双光合作用机制可能比我们的数据所表明的更为普遍。