Bagrov Andrey A, Danilov Mikhail, Brener Sergey, Harland Malte, Lichtenstein Alexander I, Katsnelson Mikhail I
Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden.
Institute for Molecules and Materials, Radboud University, 6525AJ Nijmegen, The Netherlands.
Sci Rep. 2020 Nov 24;10(1):20470. doi: 10.1038/s41598-020-77513-0.
A considerable success in phenomenological description of [Formula: see text] superconductors has been achieved within the paradigm of Quantum Critical Point (QCP)-a parental state of a variety of exotic phases that is characterized by dense entanglement and absence of well-defined quasiparticles. However, the microscopic origin of the critical regime in real materials remains an open question. On the other hand, there is a popular view that a single-band t-[Formula: see text] Hubbard model is the minimal model to catch the main relevant physics of superconducting compounds. Here, we suggest that emergence of the QCP is tightly connected with entanglement in real space and identify its location on the phase diagram of the hole-doped t-[Formula: see text] Hubbard model. To detect the QCP we study a weighted graph of inter-site quantum mutual information within a four-by-four plaquette that is solved by exact diagonalization. We demonstrate that some quantitative characteristics of such a graph, viewed as a complex network, exhibit peculiar behavior around a certain submanifold in the parametric space of the model. This method allows us to overcome difficulties caused by finite size effects and to identify precursors of the transition point even on a small lattice, where long-range asymptotics of correlation functions cannot be accessed.
在量子临界点(QCP)范式内,对[公式:见文本]超导体的唯象描述取得了相当大的成功,QCP是各种奇异相的母态,其特征是高度纠缠且不存在明确的准粒子。然而,实际材料中临界区域的微观起源仍然是一个悬而未决的问题。另一方面,有一种流行的观点认为,单带t-[公式:见文本]哈伯德模型是捕捉超导化合物主要相关物理的最小模型。在这里,我们表明QCP的出现与实空间中的纠缠紧密相关,并确定了其在空穴掺杂t-[公式:见文本]哈伯德模型相图上的位置。为了检测QCP,我们研究了一个由精确对角化求解的4×4格点内的格点间量子互信息加权图。我们证明,作为一个复杂网络来看,这样一个图的一些定量特征在模型参数空间的某个子流形周围表现出奇特的行为。这种方法使我们能够克服有限尺寸效应带来的困难,甚至在小晶格上识别出转变点的前兆,而在小晶格上无法获得关联函数的长程渐近行为。