Suppr超能文献

一种用于支持成人注意力缺陷多动障碍(ADHD)临床诊断的混合人工智能方法。

A hybrid AI approach for supporting clinical diagnosis of attention deficit hyperactivity disorder (ADHD) in adults.

作者信息

Tachmazidis Ilias, Chen Tianhua, Adamou Marios, Antoniou Grigoris

机构信息

School of Computing and Engineering, University of Huddersfield, Huddersfield, UK.

South West Yorkshire Partnership NHS Foundation Trust, Wakefield, UK.

出版信息

Health Inf Sci Syst. 2020 Nov 20;9(1):1. doi: 10.1007/s13755-020-00123-7. eCollection 2021 Dec.

Abstract

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that includes symptoms such as inattentiveness, hyperactivity and impulsiveness. It is considered as an important public health issue and prevalence of, as well as demand for diagnosis, has increased as awareness of the disease grew over the past years. Supply of specialist medical experts has not kept pace with the increasing demand for assessment, both due to financial pressures on health systems and the difficulty to train new experts, resulting in growing waiting lists. Patients are not being treated quickly enough causing problems in other areas of health systems (e.g. increased GP visits, increased risk of self-harm and accidents) and more broadly (e.g. time off work, relationship problems). Advances in AI make it possible to support the clinical diagnosis of ADHD based on the analysis of relevant data. This paper reports on findings related to the mental health services of a specialist Trust within the UK's National Health Service (NHS). The analysis studied data of adult patients who underwent diagnosis over the past few years, and developed a hybrid approach, consisting of two different models: a machine learning model obtained by training on data of past cases; and a knowledge model capturing the expertise of medical experts through knowledge engineering. The resulting algorithm has an accuracy of 95% on data currently available, and is currently being tested in a clinical environment.

摘要

注意力缺陷多动障碍(ADHD)是一种神经发育障碍,其症状包括注意力不集中、多动和冲动。它被视为一个重要的公共卫生问题,随着过去几年对该疾病认识的提高,其患病率以及诊断需求都有所增加。由于卫生系统面临财政压力以及培训新专家存在困难,专科医疗专家的供应未能跟上不断增长的评估需求,导致候诊名单越来越长。患者得不到及时治疗,在卫生系统的其他领域引发问题(例如全科医生就诊增加、自我伤害和事故风险增加),在更广泛的层面也产生问题(例如误工、人际关系问题)。人工智能的进步使得基于相关数据分析来支持ADHD的临床诊断成为可能。本文报告了与英国国民医疗服务体系(NHS)内一个专科信托机构的心理健康服务相关的研究结果。该分析研究了过去几年接受诊断的成年患者的数据,并开发了一种混合方法,由两种不同模型组成:一种是通过对过去病例数据进行训练获得的机器学习模型;另一种是通过知识工程捕获医学专家专业知识的知识模型。所得算法对现有数据的准确率为95%,目前正在临床环境中进行测试。

相似文献

引用本文的文献

5
The adult ADHD assessment quality assurance standard.成人注意力缺陷多动障碍评估质量保证标准。
Front Psychiatry. 2024 Aug 2;15:1380410. doi: 10.3389/fpsyt.2024.1380410. eCollection 2024.
9
Detection and explanation of anomalies in healthcare data.医疗保健数据中异常情况的检测与解释。
Health Inf Sci Syst. 2023 Apr 6;11(1):20. doi: 10.1007/s13755-023-00221-2. eCollection 2023 Dec.

本文引用的文献

2
Adult attention-deficit hyperactivity disorder: key conceptual issues.成人注意力缺陷多动障碍:关键概念问题
Lancet Psychiatry. 2016 Jun;3(6):568-78. doi: 10.1016/S2215-0366(16)30032-3. Epub 2016 May 13.
4
Attention deficit hyperactivity disorder.注意缺陷多动障碍。
Lancet. 2016 Mar 19;387(10024):1240-50. doi: 10.1016/S0140-6736(15)00238-X. Epub 2015 Sep 17.
6
Long-Term Outcomes of ADHD: Academic Achievement and Performance.ADHD 的长期预后:学业成就和表现。
J Atten Disord. 2020 Jan;24(1):73-85. doi: 10.1177/1087054714566076. Epub 2015 Jan 12.
8
Occupational issues of adults with ADHD.成人注意力缺陷多动障碍的职业问题。
BMC Psychiatry. 2013 Feb 17;13:59. doi: 10.1186/1471-244X-13-59.
9
Behavioral Assessment of Core ADHD Symptoms Using the QbTest.使用QbTest对多动症核心症状进行行为评估。
J Atten Disord. 2015 Dec;19(12):1034-45. doi: 10.1177/1087054712472981. Epub 2013 Feb 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验