Meyenberg Cunha-de Padua Monique, Fabbri Lucilla, Dufies Maeva, Lacas-Gervais Sandra, Contenti Julie, Voyton Charles, Fazio Sofia, Irondelle Marie, Mograbi Baharia, Rouleau Matthieu, Sadaghianloo Nirvana, Rovini Amandine, Brenner Catherine, Craigen William J, Bourgeais Jérôme, Herault Olivier, Bost Frédéric, Mazure Nathalie M
INSERM U1065, University of Côte d'Azur (UCA), C3M, 151 Route de St Antoine de Ginestière, BP2 3194, CEDEX 03, 06204 Nice, France.
Medical Biology Department, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco.
Cancers (Basel). 2020 Nov 23;12(11):3484. doi: 10.3390/cancers12113484.
Metabolic flexibility is the ability of a cell to adapt its metabolism to changes in its surrounding environment. Such adaptability, combined with apoptosis resistance provides cancer cells with a survival advantage. Mitochondrial voltage-dependent anion channel 1 (VDAC1) has been defined as a metabolic checkpoint at the crossroad of these two processes. Here, we show that the hypoxia-induced cleaved form of VDAC1 (VDAC1-ΔC) is implicated in both the up-regulation of glycolysis and the mitochondrial respiration. We demonstrate that VDAC1-ΔC, due to the loss of the putative phosphorylation site at serine 215, concomitantly with the loss of interaction with tubulin and microtubules, reprograms the cell to utilize more metabolites, favoring cell growth in hypoxic microenvironment. We further found that VDAC1-ΔC represses ciliogenesis and thus participates in ciliopathy, a group of genetic disorders involving dysfunctional primary cilium. Cancer, although not representing a ciliopathy, is tightly linked to cilia. Moreover, we highlight, for the first time, a direct relationship between the cilium and cancer cell metabolism. Our study provides the first new comprehensive molecular-level model centered on VDAC1-ΔC integrating metabolic flexibility, ciliogenesis, and enhanced survival in a hypoxic microenvironment.
代谢灵活性是细胞使其代谢适应周围环境变化的能力。这种适应性与抗凋亡能力相结合,赋予癌细胞生存优势。线粒体电压依赖性阴离子通道1(VDAC1)已被定义为这两个过程交叉点处的代谢检查点。在此,我们表明缺氧诱导的VDAC1裂解形式(VDAC1-ΔC)与糖酵解上调和线粒体呼吸均有关联。我们证明,由于丝氨酸215处假定的磷酸化位点缺失,以及与微管蛋白和微管相互作用的丧失,VDAC1-ΔC使细胞重新编程以利用更多代谢物,有利于在缺氧微环境中细胞生长。我们进一步发现VDAC1-ΔC抑制纤毛发生,从而参与纤毛病,这是一组涉及原发性纤毛功能障碍的遗传疾病。癌症虽然不属于纤毛病,但与纤毛密切相关。此外,我们首次强调了纤毛与癌细胞代谢之间的直接关系。我们的研究提供了首个以VDAC1-ΔC为中心的全新综合分子水平模型,该模型整合了代谢灵活性、纤毛发生以及在缺氧微环境中的生存增强。