Walkowiak Sean, Gao Liangliang, Monat Cecile, Haberer Georg, Kassa Mulualem T, Brinton Jemima, Ramirez-Gonzalez Ricardo H, Kolodziej Markus C, Delorean Emily, Thambugala Dinushika, Klymiuk Valentyna, Byrns Brook, Gundlach Heidrun, Bandi Venkat, Siri Jorge Nunez, Nilsen Kirby, Aquino Catharine, Himmelbach Axel, Copetti Dario, Ban Tomohiro, Venturini Luca, Bevan Michael, Clavijo Bernardo, Koo Dal-Hoe, Ens Jennifer, Wiebe Krystalee, N'Diaye Amidou, Fritz Allen K, Gutwin Carl, Fiebig Anne, Fosker Christine, Fu Bin Xiao, Accinelli Gonzalo Garcia, Gardner Keith A, Fradgley Nick, Gutierrez-Gonzalez Juan, Halstead-Nussloch Gwyneth, Hatakeyama Masaomi, Koh Chu Shin, Deek Jasline, Costamagna Alejandro C, Fobert Pierre, Heavens Darren, Kanamori Hiroyuki, Kawaura Kanako, Kobayashi Fuminori, Krasileva Ksenia, Kuo Tony, McKenzie Neil, Murata Kazuki, Nabeka Yusuke, Paape Timothy, Padmarasu Sudharsan, Percival-Alwyn Lawrence, Kagale Sateesh, Scholz Uwe, Sese Jun, Juliana Philomin, Singh Ravi, Shimizu-Inatsugi Rie, Swarbreck David, Cockram James, Budak Hikmet, Tameshige Toshiaki, Tanaka Tsuyoshi, Tsuji Hiroyuki, Wright Jonathan, Wu Jianzhong, Steuernagel Burkhard, Small Ian, Cloutier Sylvie, Keeble-Gagnère Gabriel, Muehlbauer Gary, Tibbets Josquin, Nasuda Shuhei, Melonek Joanna, Hucl Pierre J, Sharpe Andrew G, Clark Matthew, Legg Erik, Bharti Arvind, Langridge Peter, Hall Anthony, Uauy Cristobal, Mascher Martin, Krattinger Simon G, Handa Hirokazu, Shimizu Kentaro K, Distelfeld Assaf, Chalmers Ken, Keller Beat, Mayer Klaus F X, Poland Jesse, Stein Nils, McCartney Curt A, Spannagl Manuel, Wicker Thomas, Pozniak Curtis J
Crop Development Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Grain Research Laboratory, Canadian Grain Commission, Winnipeg, Manitoba, Canada.
Nature. 2020 Dec;588(7837):277-283. doi: 10.1038/s41586-020-2961-x. Epub 2020 Nov 25.
Advances in genomics have expedited the improvement of several agriculturally important crops but similar efforts in wheat (Triticum spp.) have been more challenging. This is largely owing to the size and complexity of the wheat genome, and the lack of genome-assembly data for multiple wheat lines. Here we generated ten chromosome pseudomolecule and five scaffold assemblies of hexaploid wheat to explore the genomic diversity among wheat lines from global breeding programs. Comparative analysis revealed extensive structural rearrangements, introgressions from wild relatives and differences in gene content resulting from complex breeding histories aimed at improving adaptation to diverse environments, grain yield and quality, and resistance to stresses. We provide examples outlining the utility of these genomes, including a detailed multi-genome-derived nucleotide-binding leucine-rich repeat protein repertoire involved in disease resistance and the characterization of Sm1, a gene associated with insect resistance. These genome assemblies will provide a basis for functional gene discovery and breeding to deliver the next generation of modern wheat cultivars.
基因组学的进展加速了几种重要农作物的改良,但在小麦(普通小麦种)上进行类似的工作则更具挑战性。这主要是由于小麦基因组的大小和复杂性,以及缺乏多个小麦品系的基因组组装数据。在此,我们生成了六倍体小麦的10个染色体假分子和5个支架组装体,以探索全球育种计划中小麦品系间的基因组多样性。比较分析揭示了广泛的结构重排、来自野生近缘种的基因渗入,以及复杂育种历史导致的基因含量差异,这些育种历史旨在提高对不同环境的适应性、谷物产量和品质以及抗逆性。我们提供了这些基因组实用性的示例,包括参与抗病性的详细多基因组来源的核苷酸结合富含亮氨酸重复蛋白库,以及与抗虫性相关的基因Sm1的特征描述。这些基因组组装将为功能基因发现和育种提供基础,以培育出下一代现代小麦品种。